Paddy rice response to herbicides due to shadowing and soil flooding

Authors

DOI:

https://doi.org/10.5965/223811712222023242

Keywords:

Protox inhibitors, Oryza sativa, herbicide selectivity., Protox inhibitors, Oryza sativa, herbicide selectivity

Abstract

The existence of a wide weed diversity makes the efficient weed management necessary to avoid the weed interference and grain yield decrease. In season that El Niño is prevalent, the soil flooding is usually in paddy fields, and the cloudy time was frequent, this combination can directly decrease the weed control and rising the crop phytointoxication after the herbicide spraying. So, the objective of this research was to evaluate the paddy rice response to herbicide to shadowing and soil flooding. For that were assessed two conditions of soil saturation (with or without soil flooding), the exposing to plant rice in two light conditions, since de emergence to herbicide application (with or without shadowing) and four herbicide application: 1) check without herbicide, 2) [imazapyr + imazapic], 3) [imazapyr + imazapic] + saflufenacil e 4) [imazapyr + imazapic] + carfentrazone-ethyl. The assessed variables were phytointoxication, chlorophyll content, plant height and aboveground biomass. The herbicides caused initial phytointoxication, however there were natural recuperation of rice shoot at long of the evaluations. The paddy rice growth, of cultivar SCS121 CL, were affected by herbicide application, mainly when the tank mixture of imazapyr + imazapic plus saflufenacil or carfentrazone-ethyl. The soil flooding and the shadowing little affected the herbicide selectivity to paddy rice.

Downloads

Download data is not yet available.

References

BEUTLER AM et al. 2012. Propriedades físicas do solo e produtividade de arroz irrigado em diferentes sistemas de manejo. Revista Brasileira de Ciência do Solo 36: 1601-1607.

CAPUTO GA et al. 2017. Efeito dos herbicidas imazapyr + imazapic e propanil e sua associação em diferentes espécies de plantas. Disponível em: https://www.alice.cnptia.embrapa.br/bitstream/doc/1077109/1/GermaniGiovanni.pdf. Acesso em: 12 ago. 2022.

CARLESSO R et al. 1998. Índice de área foliar e altura de plantas de arroz submetidas a diferentes práticas de manejo. Revista Brasileira de Engenharia Agrícola e Ambiental 2: 268-272.

CATONI JM et al. 2020. Interação do tratamento de sementes e da mistura em tanque de herbicidas na seletividade para o arroz irrigado. Revista de Ciências Agroveterinárias 19: 16-25.

CIESLIK LF et al. 2013. Fatores ambientais que afetam a eficácia de herbicidas inibidores da ACCase: revisão. Planta Daninha 31: 483-489.

CONAB - COMPANHIA NACIONAL DE ABASTECIMENTO. 2022. Acompanhamento da Safra Brasileira de Grãos, Brasília: CONAB. (5º Levantamento da Safra 2021/22).

CONCENÇO G et al. 2006. Controle de plantas daninhas em arroz irrigado em função de doses de herbicidas pré-emergentes e início da irrigação. Planta Daninha 24: 303-309.

COSTA GA et al. 2018. Levels of shading and application of glyphosate and carfentrazone-ethyl in the control of Macroptilium atropurpureum. Revista Brasileira de Engenharia Agrícola e Ambiental 22: 819-824.

EPAGRI/CEPA. 2022. Boletim Agropecuário. Florianópolis: EPAGRI. 49p. (Boletim agropecuário 104)

FALEIRO EA et al. 2021. Integrated management of tough lovegrass (Eragrostis plana Nees): associating chemical control tools and plant physiology. Ciência Rural 51: 1-7.

FERNANDES LG & RODRIGUES RR. 2017. Changes in the patterns of extreme rainfall events in southern Brazil. International Journal of Climatology 38: 1337-1352.

FERREIRA DF. 2019. SISVAR: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria 37: 529-535.

GALVIN LB et al. 2022. Assessment of oxyfluorfen‐tolerant rice systems and implications for rice‐weed management in California. Pest Management Science 78: 4905-4912.

HELGUEIRA DB et al. 2017. Weed management in rice under sprinkler and flood irrigation systems. Planta Daninha 36: e018177637.

HERRMANN MLP. 2014. Atlas de Desastres Naturais do Estado de Santa Catarina: período de 1980 a 2010. atual. e rev. Florianópolis: IHGSC/Cadernos Geográficos. 7p.

KOUSKY VE et al. 1984. A review of the Southern Oscillation: oceanic-atmospheric circulation changes and related rainfall anomalies. Tellus A: Dynamic Meteorology and Oceanography 36: 490-504.

KUVA MA et al. 2016. Experimentos de eficiência e praticabilidade agronômica com herbicidas. In: MONQUERO PA. Experimentação com herbicidas. São Carlos: Rima. p.75-98.

LACERDA MC & NOLDIN JA. 2021. Arroz: manejo de plantas daninhas. Brasília: Embrapa. Disponível em: https://www.embrapa.br/agencia-de-informacao-tecnologica/cultivos/arroz/producao/sistema-de-cultivo/arroz-irrigado-na-regiao-tropical/manejo-de-pragas/manejo-de-plantas-daninhas. Acesso em: 19 out. 2022.

MARTINI LFD et al. 2023. Environmental conditions affect herbicide selectivity on paddy rice in Southern Brazil. Ciência Rural 53: 1-11.

MACHADO SLO et al. 2006. Consumo de água e perdas de nutrientes e de sedimentos na água de drenagem inicial do arroz irrigado. Ciência Rural 36: 65-71.

MOTA LM et al. 2020 Light availability interferes with absorption and translocation of 14C-glyphosate in Urochloa brizantha cv. Marandu plants. Journal of Radioanalytical and Nuclear Chemistry 326: 683-693.

OLIVEIRA NETO AM et al. 2020. Off-season management as an alternative to reduce weed infestation in paddy rice production systems. Planta Daninha 38: e020228645.

PEREIMA MFR et al. 2021. A systematic analysis of climate model precipitation in southern Brazil. International Journal Of Climatology 42: 4240-4257.

RICCE WS et al. 2016 Estimativas de perdas na agricultura por chuvas excessivas no Alto Vale do Rio Itajaí em 2015. Revista Agropecuária. Catarinense 29: 42-45.

ROMAN ES et al. 2005. Como funcionam os herbicidas: da biologia à aplicação. Passo Fundo: Berthier.152 pg.

SANTOS AB. 2021. Cultivo do arroz: sistemas de cultivo. Santo Antônio de Goiás: Embrapa Arroz e Feijão. Disponível em: https://www.embrapa.br/cultivo-do-arroz/producao/sistema-de-cultivo. Acesso em: 03 fev. 2022.

SARTORI GMZ et al. 2013. Rendimento de grãos e eficiência no uso de água de arroz irrigado em função da época de semeadura. Ciência Rural 43: 397-403.

SEAPDR. 2022. RELATÓRIO ESTIAGEM Nº 07/2022. Disponível em: https://www.agricultura.rs.gov.br/upload/ arquivos/202204/04103732-relatorio-estiagem-07.pdf. Acesso em: 20 out. 2022.

SCHELTER M et al. 2021. Sensibilidade de arroz-daninho oriundo de rebrote a imazapyr + imazapic. Weed Control Journal 20: e202100748.

SOSBAI – SOCIEDADE SUL BRASILEIRA DE ARROZ IRRIGADO. 2018. Arroz irrigado: recomendações técnicas da pesquisa para o Sul do Brasil. Cachoeirinha: SOSBAI. 205 pg.

SUN R et al. 2019. Contrasting impacts of two types of El Niño on the yields of early rice in Southern China. Agronomy Journal 112: 1084-1100.

Published

2023-05-31

How to Cite

VIEIRA, Carlos; SOUZA, Elison Diego de; SCARIOT, Mateus Henrique; FREITAS, Lariane Fontana de; FRUET, Diogo Luiz; GUERRA, Naiara; NETO, Antônio Mendes de Oliveira. Paddy rice response to herbicides due to shadowing and soil flooding. Revista de Ciências Agroveterinárias, Lages, v. 22, n. 2, p. 242–250, 2023. DOI: 10.5965/223811712222023242. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/22833. Acesso em: 21 dec. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)