Phytotoxicity of low doses of dicamba when sprayed in pre-emergence on non-tolerant soybean

Authors

DOI:

https://doi.org/10.5965/223811712122022085

Keywords:

hormonal herbicides, drift, phytotoxicity, yield, toxicity

Abstract

Soybean transgenic cultivars provide a new alternative for elaborating weed management programs once they allow the application of herbicides previously considered non-selective to the crops, and between them, dicamba. However, it is well known that non-tolerant cultivars are extremely sensitive to this herbicide due to spray drift or incorrect tank wash, which may promote severe injuries to the crop. Therefore, this work was developed to evaluate the susceptibility of dicamba non-tolerant soybean submitted to simulated drift of this herbicide in pre-emergence conditions. Three experiments were conducted, two inside a greenhouse and one in field condition. A randomized block design was adopted with four replications each. In the greenhouse, soybean cultivars Agroeste AS 3590 IPRO and Nidera 7709 IPRO were evaluated, simulating seven and six doses of dicamba, respectively. On the field, cultivar Monsoy 5917 IPRO was adopted, with six doses of dicamba. In general, besides soybean cultivar, visual symptoms were observed on plants up to 3.75 g ha-1 of dicamba, and 60 g ha-1 might be considered as the critical doses. Bellow this dose, plants were able to recover from symptoms; however, above this dose, a reduction on mass of dry matter was observed. In field conditions, no yield losses were observed for soybean, regarding the doses evaluated.

Downloads

Download data is not yet available.

References

AGROLINK. 2021. Bula Xtendicam. Disponível em: <https://www.agrolink.com.br/agrolinkfito/produto/xtendicam_10280.

html>. Acesso em: 23 set. 2021.

AGUIAR ACM et al. 2020. Seleção de espécies bioindicadoras de resíduos de dicamba no solo. Agrarian 13: 187-194.

ALVES GS et al. 2017. Dicamba spray drift as influenced by wind speed and nozzle type. Weed Technology 31: 724-731.

CARVALHO LB et al. 2011. Detection of sourgrass (Digitaria insularis) biotypes resistant to glyphosate in Brazil. Weed Science 59: 171-176.

CARVALHO SJP et al. 2015. Detection of glyphosate-resistant palmer-amaranth (Amaranthus palmeri) in agricultural areas of Mato Grosso, Brazil. Planta Daninha 33: 579-586.

CARVALHO SJP et al. 2021. Efficacy and interaction of dicamba-haloxyfop tank mixtures. Revista de Ciências Agroveterinárias 20: 1-9.

CIUBERKIS S et al. 2010. Effect of weed emergence time and intervals of weed and crop competition on potato yield. Weed Technology 21: 213-218.

COMFORT SD et al. 1992. Degradation and transport of dicamba in a clay soil. Journal of Environmental Quality 21: 653-658.

CONAB. 2021. Companhia Nacional de Abastecimento. Acompanhamento da safra Brasileira de grãos. Safra 2020/21, Disponível em: <https://www.conab.gov.br/info-agro/safras/graos>. Acesso em: 31 mar. 2021.

COSTA EM et al. 2020. Simulated drift of dicamba and 2,4-D on soybeans: effects of application dose and time. Bioscience Journal 36: 857-864.

CTNBio. 2016. Comissão Técnica Nacional de Biossegurança. Reunião ordinária da comissão técnica nacional de biossegurança 198. Deliberações. Brasilia: MAPA.

DALAZEN G et al. 2019. Low temperature reverses the resistante to glyphosate in hairy fleabane (Conyza bonariensis). Journal of Plant Protection Research 59: 1-8.

DALLA E et al. 2014. Drift of 2,4-D and dicamba applied to soybean at vegetative and reproductive growth stage. Ciência Rural 48: 1-7.

EGAN JF et al. 2014. A meta-analysis on the effects of 2,4-D and dicamba drift on soybean and cotton. Weed Science 62: 193-206.

FIGUEIREDO M et al. 2016. Resistência de plantas daninhas a herbicidas análogos das auxinas (Grupo O). In.: CHRISTOFFOLETI PJ & NICOLAI M. Aspectos de resistências de plantas daninhas a herbicidas. Piracicaba: ESALQ. 219-228.

FRIESEN HA. 1965. The movement and persistence of dicamba in soil. Weeds 13: 30-33.

GRIFFIN JL et al. 2013. Soybean response to dicamba applied at vegetative and reproductive growth stages. Weed Technology 27: 696-703.

GROVER R. 1977. Mobility of dicamba, picloram and 2,4-D in soil columns. Weed Science 25: 159-162.

HEAP IM. 2021. International survey of herbicide-resistant weeds. Disponível em: . Acesso em: 24 mar. 2021.

INOUE MH et al. 2003. Critérios para avaliação do potencial de lixiviação dos herbicidas comercializados no estado do Paraná. Planta Daninha 21: 313-323.

KAH M et al. 2007. Factors influencing degradation of pesticides in soil. Journal of Agricultural and Food Chemistry 55: 4487-4492.

KRUEGER JP et al. 1991. Aerobic and anaerobic soil metabolism of dicamba. Journal of Agricultural and Food Chemistry 39: 995-999.

LICORINI LR et al. 2015. Identificação e controle de biótipos resistentes de Digitaria insularis (L.) Fedde ao glyphosate. Revista Brasileira de Herbicidas 14: 141-147.

MENASSERI S et al. 2003. Sorption of aged dicamba residues in soil. Pest Management Science 60: 297-304.

MOREIRA MS et al. 2007. Resistência de Conyza canadenses e C. bonariensis ao herbicida glyphosate. Planta Daninha 25: 157-164.

MURRAY MR & HALL JK. 1989. Sorption-desorption of dicamba and 3,6-dichlorosalicylic acid in soils. Journal of Environmental Quality 18: 51-57.

OLIVEIRA JUNIOR RS. 2011. Mecanismos de ação de herbicidas. In: OLIVEIRA JUNIOR RS et al. Biologia e manejo de plantas daninhas. Curitiba: Omnipax. 141-192.

OSIPE JB et al. 2017. Spectrum of weed control with 2,4-D and dicamba herbicides associated to glyphosate or not. Planta Daninha 35: e017160815.

SBCPD. 1995. SOCIEDADE BRASILEIRA DA CIÊNCIA DAS PLANTAS DANINHAS. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina: SBCPD. 42p.

SCOTT AJ & KNOTT MA. 1974. A cluster analysis method for grouping means in the analysis of variance. Biometrics 30: 507-512.

SILVA APP et al. 2014. Growth and development of honey weed based on days or thermal units. Planta Daninha 32: 81-89.

SILVA DRO et al. 2020. Simulated rainfall following the preplant application of 2,4-D and dicamba in soybean. Pesquisa Agropecuária Tropical 50: e62780.

SILVA DRO et al. 2018. Drift of 2,4-D and dicamba applied to soybean at vegetative and reproductive growth stage. Ciência Rural 48: e2018179.

SOARES DJ et al. 2012. Control of glyphosate resistant hairy fleabane (Conyza bonariensis) with dicamba and 2,4-D. Planta Daninha 30: 401-406.

SPAUNHORST DJ et al. 2014. Glyphosate-resistant giant ragweed (Ambrosia trifida) and waterhemp (Amaranthus rudis) management in dicamba resistant soybean (Glycine max). Weed Technology 28: 131-141.

VASCONCELOS MDC et al. 2012. Interferência de plantas daninhas sobre plantas cultivadas. Agropecuária Científica no Semiárido 8: 1-6.

ZHOU X et al. 2016. Metabolism and residues of 2,4-dichlorophenoxyacetic acid in DAS-40278-9 maize (Zea mays) transformed with aryloxyalkanoate dioxygenase-1 gene. Journal of Agricultural and Food Chemistry 64: 7438-7444.

Published

2022-03-25

How to Cite

CARVALHO, Saul Jorge Pinto de; MAGALHÃES, Túlio Braga; OVEJERO, Ramiro Fernando López; PALHANO, Matheus Gabriel. Phytotoxicity of low doses of dicamba when sprayed in pre-emergence on non-tolerant soybean. Revista de Ciências Agroveterinárias, Lages, v. 21, n. 2, p. 85–92, 2022. DOI: 10.5965/223811712122022085. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/21419. Acesso em: 22 dec. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)