Water consumption and yield efficiency of wheat plants treated with Trinexapac-ethyl
DOI:
https://doi.org/10.5965/223811711722018198Keywords:
Triticum aestivum L., plant growth regulators, plant architecture, water use efficiency, harvest indexAbstract
Efficient use of the resources of the growing environment, which is affected by plant traits, is very important for crop adaptation on production system. This work aimed to study the water consumption and yield efficiency of wheat plants treated with Trinexapac-ethyl. Two experiments were carried out, in greenhouse conditions, between 2014 and 2015. Experiments were arranged in randomized blocks design in a factorial 2x3, with four replicates. Two wheat cultivars were sprayed with three Trinexapac-ethyl doses (0, 125 and 188 g a.i. ha-1), at main culm elongation stage. The water consumption, plant height, source-sink distance and the morphological parameters of the flag leaf were evaluated. At the end of the growing cycle, yield and yield components were determined, as well as harvest index. Trinexapac-ethyl reduced plant growth, without affecting grain production. Plant growth regulator application does not reduce either water consumption or wheat crop harvest index.Downloads
References
ALVAREZ RCF et al. 2016. Trinexapac-ethyl affects growth and gas exchange of upland rice. Revista Caatinga 29: 320-326.
ASSENG S & VAN HERWAARDEN AF. 2003. Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant and Soil 256: 217-229.
BERTI M et al. 2007. Produtividade de cultivares de trigo em função do trinexapac ethyl e doses de nitrogênio. Scientia Agraria 8: 127-134.
CAI G et al. 2016. Genetic dissection of plant architecture and yield-related traits in Brassica napus. Scientific Reports 6: 2-16.
CHAVARRIA G et al. 2015. Regulador de crescimento em plantas de trigo: reflexos sobre o desenvolvimento vegetativo, rendimento e qualidade de grãos. Revista Ceres 62: 583-588.
EMBRAPA. 2006. Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. 2.ed. Rio de Janeiro: EMBRAPA. 306p.
FIALHO CMT et al. 2009. Caracteres morfoanatômicos de Brachiaria brizantha submetida à aplicação de trinexapac-ethyl. Planta Daninha 27: 533-539.
FIOREZE SL & RODRIGUES JD. 2014a. Componentes produtivos do trigo afetados pela densidade de semeadura e aplicação de regulador vegetal. Semina: Ciências Agrárias 35: 39-53.
FIOREZE SL & RODRIGUES JD. 2014b. Tillering affected by sowing density and growth regulators in wheat. Semina: Ciências Agrárias 35: 589-604.
GUO Y et al. 2011. Plant growth and architectural modeling and its applications. Annals of Botany 107: 723-727.
INOUE T et al. 2004. Contribution of pre-anthesis assimilates and current photosynthesis to grain yield, and their relationships to drought resistance in wheat cultivars grown under different soil moisture. Photosynthetica 42: 99-104.
LARGE EC. 1954. Growth stages in cereals illustration of the feeks scale. Plant Pathology 3: 128-129.
LONG SP et al. 2006. Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment 29: 315-330.
LOZANO CM & LEADEN MI. 2002. Efecto de reguladores de crecimiento sobre el rendimiento y altura en dos cultivares de trigo. In: CONGRESSO NACIONAL DE TRIGO, 5., SIMPÓSIO NACIONAL DE CEREALES DE SIEMBRA OTOÑO INVERNAL, 3. Argentina; Facultad de Ciencias Agrarias UNMdP. 3p.
MAITI R & RODRÍGUEZ HG. 2010. Plant architecture determines the productivity potential of a crop: a biochemical genetics tool. International Journal of Bio-Resource and Stress Management 1: 1-3.
MONTANHEIRO MN et al. 1979. Controle de tensões de água no solo em vasos com feijoeiro (Phaseolus vulgaris). In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO,17, Manaus. Anais... Campinas: SBCS. p. 68.
PIMENTEL C. 2004. A relação da planta com a água. Rio de Janeiro: EDUR. 191p.
RICHARDS RA. 2000. Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany 51: 447-458.
SONG Q et al. 2013. Optimal crop canopy architecture to maximize canopy photosynthetic CO2 uptake under elevated CO2 – a theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology 40: 109-124.
SOUZA FS & ROSOLEM CA. 2007. Rainfall intensity and mepiquat chloride persistence in cotton. Scientia Agricola 64: 125-130.
SOUZA VQ et al. 2013. Desfolha em diferentes estádios fenológicos sobre características agronômicas em trigo. Bioscience Journal 29: 1905-1911.
TRAUTMANN RR et al. 2014. Potencial de água do solo e adubação com boro no crescimento e absorção do nutriente pela cultura da soja. Revista Brasileira de Ciência do Solo 38: 240-251.
THOLEN D et al. 2012. Opinion: Prospects for improving photosynthesis by altering leaf anatomy. Plant Science 197: 92-101.
YANG XC & HWA CM. 2008. Genetic modification of plant architecture and variety improvement in rice. Heredity 101: 396-404.
WANG Y & LI J. 2008. Molecular Basis of plant architecture. Annual review of plant biology 59: 253-279.
ZAGONEL J & FERNANDES EC. 2007. Doses e épocas de aplicação de redutor de crescimento afetando cultivares de trigo em duas doses de nitrogênio. Planta Daninha 25: 331-339.
ZAGONEL J et al. 2002. Efeito de regulador de crescimento na cultura de trigo submetido a diferentes doses de nitrogênio e densidades de plantas. Planta Daninha 20: 471-476.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista de Ciências Agroveterinárias (Journal of Agroveterinary Sciences)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors publishing in this journal are in agreement with the following terms:
a) Authors maintain the copyrights and concede to the journal the copyright for the first publication, according to Creative Commons Attribution Licence.
b) Authors have the authority to assume additional contracts with the content of the manuscript.
c) Authors may supply and distribute the manuscript published by this journal.