Incrementos produtivos na cultura da soja pelo uso de arranjos equidistantes e níveis tecnológicos nos sistemas de cultivo

Autores

DOI:

https://doi.org/10.5965/223811712132022182

Palavras-chave:

Glycine max L., arranjos espaciais, tecnologia, índice de vegetação por diferença normalizada, produção de cultivos

Resumo

O arranjo das plantas de soja define sua habilidade em reconhecer o ambiente e aprimorar suas interações bióticas e abióticas com este. Este estudo objetivou avaliar o efeito de diferentes arranjos de plantio associados com dois distintos sistemas de cultivo (alto nível tecnológico ou nível tecnológico convencional), nas variedades8473 RSF e AS 3730, para avaliar a performance e produtividades das plantas à campo. O esquema fatorial duplo foi adotado, sendo: duas variedades e seis arranjos espaciais. Dois experimentos foram conduzidos durante o ano agrícola 2017-2018; no primeiro experimento considerou-se o padrão de cultivo da soja no Cerrado Brasileiro (sem sistema de irrigação a nível adequado de adubação), enquanto no segundo experimento foi adotado alto nível tecnológico (com sistema de irrigação e adubação superior aos padrões convencionados para o Cerrado). Foram avaliados parâmetros morfofisiológicos, índice de vegetação por diferença normalizada (IVDN), conteúdo de pigmentos foliares e parâmetros de produção da cultura. Nosso estudo apontou respostas positivas de ambos genótipos cultivados e sob os dois níveis tecnológicos sob os arranjos equidistantes e submetidos a alta densidade de plantio. Significativas respostas foram observadas para índice de área foliar, conteúdo de pigmentos foliares, IVDN e produção de soja, quando submetida aos diferentes arranjos equidistantes. Entretanto, este procedimento requer ajustes dentro dos níveis tecnológicos e identificação das variedades mais adequada a este modelo de cultivo.

Downloads

Não há dados estatísticos.

Referências

AGUDAMU TY & SHIRAIWA T. 2016. Branch development responses to planting density and yield stability in soybean cultivars. Plant Production Science 19: 331–339.

BALBINOT JUNIOR AA et al. 2018. Phenotypic plasticity in a soybean cultivar with indeterminate growth type. Pesquisa Agropecuaria Brasileira 53: 1038–1044.

BERNARD RL et al. 1965. Results of the cooperative uniform soybean tests Part I. North Central States. Uniform Soybean Tests Northern Region. Paper 27.

BEUERLEIN JE et al. 1971. Effect of Branch Removal and Plant Populations at Equidistant Spacings on Yield and Light Use Efficiency of Soybean Canopies. Agronomy Journal 63: 317–319.

BHUSAL TN et al. 2016. Discrimination of maize (Zea maysL.) inbreds for morphophysiological and yield traits by D2 statistics and principal component analysis (PCA). Asian Journal of Bioscience 11: 77–84.

BOARD J. 2000. Light Interception Efficiency and Light Quality Affect Yield Compensation of Soybean at Low Plant Populations. Crop Science 40: 1285–1294.

BOARD J 2001. Reduced Lodging for Soybean in Low Plant Population is Related to Light Quality. Crop Science 41: 379–384.

BRO R & SMILDE AK. 2014. Principal component analysis. Analytical Methods 6: 2812–2831.

BÜCHLING C. et al. 2017. Uso da plasticidade morfológica como estratégia para a redução da população de plantas em cultivares de soja. Agrarian 10: 22–30.

CARVALHO AM et al. 2020. SPEED Stat: a free, intuitive, and minimalist spreadsheet program for statistical analyses of experiments. Crop Breeding and Applied Biotechnology 20: e327420312.

DE LUCA MJ & HUNGRÍA M. 2014. Plant densities and modulation of symbiotic nitrogen fixation in Soybean. Scientia Agricola 71: 181–187.

DUARTE TC et al. 2016. Spatial arrangements and fertilizer doses on soybean yield and its components. Revista Brasileira de Engenharia Agricola e Ambiental 20: 960–964.

EGLI DB. 1994. Mechanisms responsible for soybean yield response to equidistant planting patterns. Agronomy Journal 86: 1046–1049.

FEHR WR & CAVINESS CE. 1977. Stages of soybean development. (Special Report 87).

FERREIRA MH et al. 2019. Multivariate analysis for wheat genotypes cultivated in Brazilian savanna (Cerrado). Agriculture & Forestry 65: 183–192.

HAMMER ØH et al. 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 5–7.

HEIFFIG LS et al. 2006. Fechamento e índice de área foliar da cultura da soja em diferentes arranjos espaciais. Bragantia 65: 285–295.

HERMANN DERETTI AF et al. 2022. Response of soybean cultivars to the reduction of plant density in the northern plateau of Santa Catarina. Revista de Ciencias Agroveterinarias 21: 123–136.

HOLSHOUSER DL & WHITTAKER JP. 2002. Plant population and row-spacing effects on Early Soybean Production Systems in the Mid-Atlantic USA. Agronomy Journal 94: 603–611.

KUMAGAI E & TAKAHASHI T. 2020. Soybean (Glycine max (L.) Merr.) yield reduction due to late sowing as a function of radiation interception and use in a cool region of northern Japan. Agronomy 10: 66.

KUSS RCR et al. 2008 Populações de plantas e estratégias de manejo de irrigação na cultura da soja. Ciencia Rural 38: 133–1137.

LICHTENTHALER HK & WELLBURN AR. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11: 591–592.

LYRA WS et al. 2010 Classificação Periódica: um exemplo didático para ensinar análise de componentes principais. Química Nova 33: 1594–1597.

MACEDO WR et al. 2013. Unravelling the physiologic and metabolic action of thiamethoxam on rice plants. Pesticide Biochemistry and Physiology 107: 244–249.

MAUAD M et al. 2010. Influência da densidade de semeadura sobre características agronômicas na cultura da soja. Agrarian 3: 175–181.

MOTOMIYA AVA et al. 2017. Variabilidade espacial de atributos químicos do solo e produtividade do algodoeiro. Agrarian 4: 1–9.

NGUY-ROBERTSON A et al. 2012. Green Leaf Area Index Estimation in Maize and Soybean: Combining Vegetation Indices to Achieve Maximal Sensitivity. Agronomy Journal 104: 1336–1347.

PONZONI FJ et al. 2012. Sensoriamento remoto no estudo da vegetação. 2.Ed. São Paulo: Oficina de Textos.

PURCELL LC et al. 2002. Radiation Use Efficiency and Biomass Production in Soybean at Different Plant Population Densities. Crop Science 42: 172–177.

RAHMAN MM & HOSSAIN MM. 2011. Plant density effects on growth, yield and yield and yield components of two soybean varieties under equidistant planting arrangement. Asian Journal of Plant Sciences 10: 278–286.

RAMBO L et al. 2003. Rendimento de grãos da soja em função do arranjo de plantas. Ciência Rural 33: 405–411.

ROUSE JW et al. 1974. Monitoring the Vernal Advancement and Retrogradation (Green Wave Efect) of Natural Vegetation. Texas A&M University 1–390 (Report 7).

SCHNEIDER CA et al. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.

SETIYONO TD et al. 2008. Leaf area index simulation in soybean grown under near-optimal conditions. Field Crops Research 108: 82–92.

SFREDO GJ. 2008. Soja no Brasil: calagem, adubação e nutrição mineral. - Portal Embrapa. Londrina: Embrapa Soja.

SHIBLES RM & WEBER CR. 1965. Leaf area, solar radiation interception and dry matter production by soybeans. Crop Science 5: 575–577.

SHIBLES RM & WEBER CR. 1966. Interception of Solar Radiation and Dry Matter Production by Various Soybean Planting Patterns. Crop Science 6: 55–59.

SOIL SURVEY STAFF. 2014. Keys to Soil Taxonomy. 12th Aufl. Washington: USDA.

SOTILLE ME et al. 2020. Evaluation of UAV and satellite-derived NDVI to map maritime Antarctic vegetation. Applied Geography 125: 102322.

SOUSA DMG & LOBATO E. 2003. Adubação fosfatada em solos da região do cerrado. Piracicaba: Potafos. 16p. (Encarte Técnico 102).

SYTAR O et al. 2016. Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Science of the Total Environment 578: 90–99.

TUCKER CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127–150.

UARROTA VG et al. 2017. Assessment of yield attributes and industrial quality parameters of oat cultivars (Avena sativa L.) using multivariate techniques (PCA, PLS-DA and OLS-R). Journal of Experimental Agriculture International 17: 1–13.

USDA. 2021. World agricultural production. Washington: USDA. 43p. (Circular Series).

WERNER F et al. 2021. Grain, oil, and protein production on soybean stems and branches under reduced densities. Revista Brasileira de Ciências Agrárias 16: e7439.

WIGGANS RG. 1939. The influence of space and arrangement on the production of soybean plants. Agronomy Journal 31: 314–321.

WILCOX JR. 1974. Response of Three Soybean Strains to Equidistant Spacings. Agronomy Journal 66: 409–412.

WITHAM FH et al. 1971. Experiments in Plant Physiology. New York: Van Nostrand Reinhold Co.

YUAN M et al. 2017. Light regulates transcription of chlorophyll biosynthetic genes during chloroplast biogenesis. Critical Reviews in Plant Sciences 36: 35–54.

ZHOU XB et al. 2011. Row spacing effect on leaf area development, light interception, crop growth and grain yield of summer soybean crops in Northern China. African Journal of Agricultural Research 6: 1430–1437.

Downloads

Publicado

2022-10-19

Como Citar

SILVA, Rodrigo Rocha; MACEDO, Willian Rodrigues. Incrementos produtivos na cultura da soja pelo uso de arranjos equidistantes e níveis tecnológicos nos sistemas de cultivo. Revista de Ciências Agroveterinárias, Lages, v. 21, n. 3, p. 182–195, 2022. DOI: 10.5965/223811712132022182. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/22271. Acesso em: 21 nov. 2024.

Edição

Seção

Artigo de Pesquisa - Ciência de Plantas e Produtos Derivados

Artigos mais lidos pelo mesmo(s) autor(es)