Sensitivity of eucalyptus (Eucalyptus urograndis) plants to subdoses of the herbicide dicamba

Authors

DOI:

https://doi.org/10.5965/223811712212023028

Keywords:

Auxinic herbicide, phytotoxicity, reforestation, biomass production, herbicides, toxicity, Dicamba

Abstract

In view of the widespread increase in herbicide-resistant weeds, biotechnology companies have developed dicamba-tolerant soybean and cotton cultivars. This technology can, however, increase the risk of the product drifting to adjacent areas. This study was developed with the objective of the to evaluate the phytotoxicity and biometric variables of young eucalyptus plants exposed to subdoses of the herbicide dicamba. The experiment was carried out under field conditions in Rio Verde, state of Goiás, Brazil. The treatments were represented by the application of 0 (control), 7.5, 15, 30, 60, 120 or 240 g ae ha-1 of dicamba 45 days after the seedlings were planted in the field. In terms of phytotoxicity, the dicamba doses of 120 and 240 g ae ha-1 caused greater damage to the eucalyptus plants in all periods of evaluation. The predominant symptoms were epinasty, increased number of shoots and necrosis and senescence of young branches and leaves. The herbicide doses of 120 and 240 g ae ha-1 significantly compromised plant height and diameter, number of branches and dry mass of leaves and roots, interfering with the growth and development of the eucalyptus crop. The results indicate that the effect of subdoses of the herbicide dicamba can interfere with the proper development of young eucalyptus plants, which may cause losses in the initial planting phase and future losses for producers.

Downloads

Download data is not yet available.

References

AGROFIT. 2018. Sistema de agrotóxicos fitossanitários. Disponível em: http://agrofit.agricultura.gov.br/ agrofit_cons/principal_agrofit_cons. Acesso em: 02 Dec. 2019

BASF CORPORATION. 2017. Engenia specimen herbicide product label. Reg. no. 7969-345.

BRADLEY K 2017. A final report on dicamba-injured soybean acres. Integrated Pest and Crop Manage 27: 2p.

CANTU RM et al. 2021. Herbicide alternative for Conyza sumatrensis control in pre-planting in no-till soybeans. Advances in Weed Science 39: 1-9.

CARVALHO GP et al. 2014. Deriva simulada de triclopyr e fluroxypyr+ triclopyr no desenvolvimento de mudas de clones de Eucalyptus. Revista Árvore 38: 165-173.

CUNDIFF GT et al. 2017. Evaluation of dicamba persistence among various agricultural hose types and cleanout procedures using soybean (Glycine max) as a bio-indicator. Weed Science 65: 305-316.

D'ANTONINO L et al. 2012. Crescimento de plantas de café em solos com resíduos de picloram. Planta Daninha 30: 193-200.

EGAN JF et al. 2014. A meta-analysis on the effects of 2,4-D and dicamba drift on soybean and cotton. Weed Science 62: 193-206.

FORMOLO JUNIOR MR et al. 2019. Cadeia produtiva do eucalipto para uso energético, em Rio Verde, Goiás. Colombro: Embrapa Florestas-Documentos (INFOTECA-E).

FRANS RE. 1972. Measuring plant responses. In: WILKINSON RE. (Ed.) Research methods in weed science. Puerto Rico: Southern Weed Science Society. p.28-41.

GAZOLA JG et al. 2021. Chemical control of wild radish and volunteer EnlistTM soybean and selectivity to wheat crop. Revista Brasileira de Ciências Agrárias 16: e413.

HATTERMAN-VALENTI H et al. 2017. Defining glyphosate and dicamba drift injury to dry edible pea, dry edible bean, and potato. Horttechnology 27: 502-509.

JOHNSON VA et al. 2012. Cotton, peanut, and soybean response to sublethal rates of dicamba, glufosinate, and 2, 4-D. Weed Technology 26: 195-206.

JOSEPH DD et al. 2018. Efficacy of 2, 4-D, dicamba, glufosinate and glyphosate combinations on selected broadleaf weed heights. American Journal of Plant Sciences 9: 1321-1333.

KELLEY KB et al. 2005. Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Science 53: 101-112.

KRUGER GR et al. 2010. Control of horseweed (Conyza canadensis) with growth regulator herbicides. Weed Technology 24: 425-429.

MOHSENI-MOGHADAM M et al. 2016. Response of wine grape cultivars to simulated drift rates of 2,4-D, dicamba, and glyphosate, and 2,4-d or dicamba plus glyphosate. Weed Technology 30: 807-814.

MORTENSEN DA et al. 2012. Navigating a critical juncture for sustainable weed management. Bioscience 62: 75-84.

MUELLER TC et al. 2015. Methods to measure herbicide volatility. Weed Science 63: 116-120.

OWEN MDK. 2016. Diverse approaches to herbicide-resistant weed management. Weed Science 64: 570-584.

PEREIRA MRR et al. 2015. Subdoses de glyphosate no desenvolvimento de espécies arbóreas nativas. Bioscience Journal 31: 326-332.

ROBINSON AP et al. 2013. Response of soybean yield components to 2,4-D. Weed Science 61: 68-76.

SALGADO TP et al. 2017. Effects of glyphosate on growth, yield and wood. Journal of Tropical Forest Secience 29: 257-266.

SANTOS JÚNIOR A et al. 2015. Glyphosate drift in eucalyptus plants. Planta Daninha 33: 615-621.

SENSEMAN SA. 2007. Herbicide handbook. 9.ed. Lawrence: Weed Science Society of America. 458p.

SILVA DA et al. 2018. Caracterização de plantas daninhas em área rotacionada de milho e feijão-caupi em plantio direto. Scientia Agropecuaria 9: 7-15.

SIMIONI FJ et al. 2017. Evolução e concentração da produção de lenha e carvão vegetal da silvicultura no Brasil. Ciência Florestal 27: 731-742.

SMITH HC et al. 2017. Cotton response to simulated auxin herbicide drift using standard and ultra-low carrier volumes. Weed Technology 31: 1-9.

SOLOMON CB & BRADLEY KW. 2014. Influence of application timings and sublethal rates of synthetic auxin herbicides on soybean. Weed Technology 28: 454-464.

TAIZ L & ZEIGER E. 1998. Plant physiology. Sunderland: Sinauer Associates Publishers, p. 679.

TIBURCIO RAS et al. 2012. Crescimento de mudas de clones de eucalipto submetidos à deriva simulada de diferentes herbicidas. Revista Árvore 36: 65-73.

TIMOSSI PC & FREITAS TT. 2011. Eficácia de nicosulfuron isolado e associado com atrazine no manejo de plantas daninhas em milho. Revista Brasileira de Herbicidas 10: 210-218.

TUFFI SANTOS LD et al. 2005. Crescimento e morfoanatomia foliar de eucalipto sob efeito de deriva do glyphosate. Planta Daninha 23: 133-142.

TUFFI SANTOS LD et al. 2006. Intoxicação de eucalipto submetido à deriva simulada de diferentes herbicidas. Planta Daninha 24: 521-526.

VIEIRA BC et al. 2020. Herbicide drift exposure leads to reduced herbicide sensitivity in Amaranthus spp. Scientific Reports 10: 1-11.

ZHOU X et al. 2016. Metabolism and residues of 2,4-dichlorophenoxyacetic acid in das-40278-9 maize (Zea mays) transformed with aryloxyalkanoate dioxygenase-1 gene. Journal of Agricultural and Food Chemistry 64: 7438-7444.

Downloads

Published

2023-03-28

How to Cite

SILVA, Carlos Henrique de Lima e; PEREIRA, Leandro Spíndola; SILVA, Jeovane Nascimento; JAKELAITIS, Adriano. Sensitivity of eucalyptus (Eucalyptus urograndis) plants to subdoses of the herbicide dicamba. Revista de Ciências Agroveterinárias, Lages, v. 22, n. 1, p. 28–36, 2023. DOI: 10.5965/223811712212023028. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/22417. Acesso em: 21 nov. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)