Yield potential of Cassava Crop in a function of planting date in a subtropical environment

Authors

  • Josias Moreira Borges Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.
  • Alencar Junior Zanon Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.
  • Michel Rocha da Silva Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.
  • Darlan Scapini Balest Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.
  • Alexandre Ferigolo Alves Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.
  • Charles Patrick de Oliveira de Freitas Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.
  • Vanderlei Both Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.
  • Amanda Thirza Lima Santos Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.

DOI:

https://doi.org/10.5965/223811711932020263

Keywords:

Manihot esculenta Crantz, climate risk zoning, food security

Abstract

Studies of potential and yield potential are extremely important worldwide, to identify and narrow yield potential. The objective of this study was to simulate cassava yield potential and water-limited yield potential using the Simanihot model. Cassava yield gap and the planting date effect were estimated for two locations in Rio Grande do Sul, Brazil (Santa Maria and São Luiz Gonzaga). Due to weather conditions, in Santa Maria cassava cycle was defined as annual and São Luiz Gonzaga as annual and biannual. Planting dates were set from August 1st 2017 to May 1st 2018, and harvested on Jun 15th 2018. Results showed that cassava express higher yield potential on early planting (August 10th), achieving 64.6 Mg ha-1 and 50.2 Mg ha-1 of tuber roots and 47.3 Mg ha-1 and 38.9 Mg ha-1 of aboveground biomass, in São Luiz Gonzaga and Santa Maria, respectively. Planting dates after the beginning of the climatic risk zoning, present a yield reduction of 0.364 Mg ha-1 in São Luiz Gonzaga and 0.282 Mg ha-1 in Santa Maria, for each day of delay on the planting date. These results indicate that planting cassava during the first ten days of August expresses the highest yields and reduces the gaps for both locations.

Downloads

Download data is not yet available.

References

ALEXANDRATOS N & BRUINSMA J. 2012. World agriculture towards 2030/2050: the 2012 revision. Rome: FAO. 160p.

ALLEM AC. 1994. The origin of Manihot esculenta Crantz (Euphorbiaceae). Genetics Resources and Crop Evolution 41: 133-150.

ALVES AAC. 2006. Fisiologia da mandioca. In: EMBRAPA Mandioca e Fruticultura Tropical. Aspectos socioeconômicos e agronômicos da mandioca. Cruz das Almas: EMBRAPA. p.138-169.

COCK JH. 1990. La yuca: nuevo potencial para un cultivo tradicional. Cali: CIAT. 240p.

DE PONTI T et al. 2012. The crop yield gap between organic and conventional agriculture. Agricultural Systems 108: 1-9.

FAGUNDES LK et al. 2009. Desenvolvimento vegetativo em diferentes hastes da planta de mandioca em função da época de plantio. Ciência Rural 39: 657-663.

FAO. 2019. Food and Agriculture Organization of The United Nations – Publications. Disponível em: http://www.fao.org/home/en. Acesso em: 17 mar. 2019.

GABRIEL LF et al. 2014. Simulating cassava growth and yield under potential conditions in Southern Brazil. Agronomy Journal 106: 1119-1137.

GLOBAL YIELD GAP ATLAS. 2019. Global Yield Gap and Water Productivity Atlas. Disponível em: http://www.yieldgap.org. Acesso: 17 mar. 2019.

GODFRAY HCJ et al. 2010. Food security: the challenge of feeding 9 billion people. Science 327: 812-818.

HOWELER R et al. 2013. Save and grow: Cassava. A guide to sustainable production intensification. Rome: FAO. 129p.

IBGE. 2019. Instituto Brasileiro de Geografia e Estatística. Levantamento Sistemático da Produção Agrícola – LSPA. Disponível em: https://sidra.ibge.gov.br/home/lspa/brasil. Acesso em: 15 mar. 2019.

KURNIAWAN W et al. 2019. Quality and fermentation characteristic of corn stover – rubber cassava (Manihot glaziovii M.A.) combination silage. IOP Conference Series Earth and Environmental Science 287: 012022.

LI M et al. 2019. Silage fermentation, chemical composition and ruminal degradation of king grass, cassava foliage and their mixture. Grassland Science 65: 210-215.

MALUF JRT et al. 2011. Zoneamento Agroclimático da Mandioca no Estado do Rio Grande do Sul – Uma alternativa para a produção de etanol. Porto Alegre: FEPAGRO. 60p. (Boletim Técnico 22).

MOREIRA GLP et al. 2017. Composição bromatológica de mandioca (Manihot esculenta) em função do intervalo entre podas. Revista de Ciências Agrárias 40: 144-153.

MORGANTE CV et al. 2020. Genetic and physiological analysis of early drought response in Manihot esculenta and its wild relative. Acta Physiologiae Plantarum 42: 22.

MOTA ADS et al. 2011. Perfil de fermentação e perdas na ensilagem de diferentes frações da parte aérea de quatro variedades de mandioca. Revista Brasileira de Zootecnia 40: 1466-1473.

NAPASIRTH V et al. 2015. Microbial population, chemical composition and silage fermentation of cassava residues. Animal Science Journal 86: 279-280.

OLIVEIRA NT et al. 2017. Effect of harvest time and nitrogen doses on cassava root yield and quality. Revista Brasileira de Ciências do Solo 41: e0150204.

SAIRAM RK et al. 2008. Physiology and biochemistry of waterlogging tolerance in plants. Biologia Plantarum 52: 401-412.

SCHONS A et al. 2007. Emissão de folhas e início de acumulação de amido em raízes de uma variedade de mandioca em função da época de plantio. Ciência Rural 37: 1586-1592.

STRECK EV et al. 2008. Solos do Rio Grande do Sul. 2.ed. Porto Alegre: Emater. 222p.

TAGLIAPIETRA BL et al. 2019. Mandioca para alimentação humana e animal. 1.ed. Santa Maria: EMATER. 104p.

TAIZ L & ZEIGER E. 2009. Fisiologia vegetal. 4.ed. Porto Alegre: Artmed. 848p.

TIRONI LF et al. 2015. Desempenho de cultivares de mandioca em ambiente subtropical. Bragantia 74: 58-66.

TIRONI LF et al. 2017. Simanihot: um modelo baseado em processos para simular o crescimento, desenvolvimento e produtividade da mandioca. Engenharia Agrícola 37: 471-483.

TIRONI LF et al. 2019. Ecofisiologia da Mandioca Visando Altas Produtividades. Santa Maria: Editora GR. 136p.

THORNTHWAITE CW & MATHER JR. 1955. The water balance. Centerton: Drexel Institute of Technology. 104p. (Publications in Climatology 1)

VAN BUSSEL LG et al. 2015. From field to atlas: upscaling of location-specific yield gap estimates. Field Crops Research 177: 98-108.

VISSES FA et al. 2018. Yield gap of cassava crop as a measure of food security-an example for the main Brazilian producing regions. Food Security 10: 1191-1202.

Published

2020-09-30

How to Cite

BORGES, Josias Moreira; ZANON, Alencar Junior; SILVA, Michel Rocha da; BALEST, Darlan Scapini; ALVES, Alexandre Ferigolo; FREITAS, Charles Patrick de Oliveira de; BOTH, Vanderlei; SANTOS, Amanda Thirza Lima. Yield potential of Cassava Crop in a function of planting date in a subtropical environment. Revista de Ciências Agroveterinárias, Lages, v. 19, n. 3, p. 263–269, 2020. DOI: 10.5965/223811711932020263. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/15675. Acesso em: 21 nov. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)