Sensitivity of Septoria lycopersici isolates and effectiveness of fungicides for the control of Septoria leaf spot in tomato

Authors

  • Alana Karine Baldicera Força Brasil Agrícola, Caçador, SC, Brasil.
  • Amauri Bogo Universidade do Estado de Santa Catarina. Lages, SC, Brasil
  • Francine Regianini Nerbass Universidade do Estado de Santa Catarina. Lages, SC, Brasil
  • Walter Ferreira Becker Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Lages, SC, Brasil
  • Ricardo Trezzi Casa Universidade do Estado de Santa Catarina, CAV/UDESC.
  • Fábio Nascimento da Silva Universidade do Estado de Santa Catarina. Lages, SC, Brasil.

DOI:

https://doi.org/10.5965/223811711922020159

Keywords:

Lycopersicon esculentum, chemical control, effective dosage, fungicide sensivity, fungitoxicity

Abstract

Septoria leaf spot is one of the main diseases affecting tomato. Its damages vary according to susceptible cultivar, pathogen physiological races, and environmental conditions. The objectives of this study were to assess the inhibitory concentration of 50% of spores (IC50), the sensitivity reduction factor (SRF) of Septoria lycopersici isolates, and the effectiveness of fungicides traditionally used to control Septoria Leaf Spot (SLS) in tomato in the state of Santa Catarina, Brazil, during the 2016 and 2017 crop seasons. For the in vitro experiment, 13 S. lycopersici isolates were obtained from leaves displaying SLS symptoms from different tomato cultivars. The fungicides thiophanate methyl and mancozeb were evaluated at concentrations of 0.1; 1.0; 10; 100 and 1000 mg L-1 of active ingredient to determine the effective dose for inhibiting 50% of spore germination (DE50) and the sensitivity reduction factor (FRS). The S. lycopersici isolates derived from tomato crops that were sprayed with these fungicides were compared with the isolates 475-1, 475-3, 475-4, and 475-7 obtained from tomato crops that remained unsprayed. For the in vivo experiments, the preventive fungicides azoxystrobin, chlorothalonil, captan, and mancozeb and the curative fungicides thiophanate methyl, mancozeb, difenoconazole, and methconazole were sprayed at the commercial dose at 12, 24, 36, 48, 72, and 96 h before (preventive) and after (curative) the inoculation with the 475-1 S. lycopersici isolate, to evaluate the efficiency of the SLS control in tomato plants. The active ingredient thiophanate methyl and mancozeb were considered non-toxic to all S. lycopersici isolates regardless of the doses tested. The DE50 values of thiophanate methyl and mancozeb rangesd from 75 to 580 mg L-1. The preventive fungicides  chlorothalonil and azoxystrobin and curative fungicides difenoconazole and metconazole were significantly efficient to control SLS in vivo.

Downloads

Download data is not yet available.

Author Biographies

Amauri Bogo, Universidade do Estado de Santa Catarina. Lages, SC, Brasil

Departamento Agronomia, área Fitopatologia.

Francine Regianini Nerbass, Universidade do Estado de Santa Catarina. Lages, SC, Brasil

Departamento Agronomia, área Biotecnologia.

Walter Ferreira Becker, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Lages, SC, Brasil

Agronomia, área Fitopatologia.

Ricardo Trezzi Casa, Universidade do Estado de Santa Catarina, CAV/UDESC.

Departamento Agronomia, área Fitopatologia.

Fábio Nascimento da Silva, Universidade do Estado de Santa Catarina. Lages, SC, Brasil.

Departamento Agronomia, área Fitopatologia.

References

AMORIM L. 1995. Avaliação de doenças. In: BERGAMIN FILHO A et al. (Eds.). Manual de fitopatologia: princípios e conceitos. 3.ed. São Paulo: Agronômica Ceres. p.647-671.

AMORIM L. et al. 2011. Manual de fitopatologia 4.ed. São Paulo: Agronômica Ceres. 704p.

BALARDIN RS et al. 2017. Mancozeb: muito além de um fungicida. Porto Alegre: Editora Bookman. 96p.

BOFF P et al. 1991. Escalas para avaliação de severidade da mancha de estenfílio (Stemphylium solani) e da pinta preta (Alternaria solani) em tomateiro. Fitopatologia Brasileira 16: 280-283.

BRENT KJ. 1998. Monitoring for Fungicide Resistance. In: DELP CJ. (Ed). Fungicide Resistance in North America. St. Paul: APS Press. p. 9-11.

CAMARGO FP & CAMARGO Filho WP. 2008. Produção de tomate de mesa no Brasil, 1990-2006: contribuição da área e da produtividade. Horticultura Brasileira 26: 1018-1021.

CARMONA MA et al. 2010. Manual de fungicidas: guia para o controle químico de doenças de plantas. 6.ed. Passo Fundo: UPF. 226p.

COOK AA. 1954. Reaction of Lycopersicon species to regional isolates of Sptoria lycopersici. Phytopathology. St. Paul 44: 374-377.

DELP CJ. 1980. Coping with resistance to plant disease control agents. Plant Disease 64: 652-657.

DO VALE FXR et al. 2013. Doenças fúngicas, bacterianas e causadas por nematóides. In: ALVARENGA MAR. Tomate: produção em campo, casa de vegetação e hidroponia. 2.ed. Lavras: UFLA. p.275-277.

EDGINGTON LV et al. 1971. Fungitoxic spectrum of benzimidazoles compounds. Phytopathology 61: 42-44.

ELMER WH & FERRANDINO FJ. 1995. Influence of spore density, leaf age, temperature, and dew periods on Septoria leaf spot of tomato. Plant Disease 79: 287-290.

ESTEP LK et al. 2015. Emergence and early evolution of fungicide resistance in North American populations of Zymoseptoria tritici. Plant Pathology 64: 961-971.

FILGUEIRA FAR. 2008. Manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças. 3.ed. Viçosa: UFV. 421p.

FORTES JF. 1985. Glomerella cingulata e Penicillium sp.: surgimento de cepas resistentes ao Benomil. Fitopatologia Brasileira 10: 280.

FURLANETO C & CAFÉ AC. 1996. Eficiência de fungicidas no controle da septoriose do tomateiro no Distrito Federal. Fitopatologia Brasileira 21. 399p. (Suplemento).

FRAC. 2013. Fungicide Resistance in Plant Pathogens. List of plant pathogenic organisms resistant to disease control agents. Disponível em: http://www.frac.info/publication/anhang/List-of-resistant-plant-pathogens_2013.pdf. Acesso em: 15 jan. 2018.

GODOY CV & CANTERI MG. 2004. Efeitos protetor, curativo e erradicante de fungicidas no controle da ferrugem da soja causada por Phakopsora pachyrhizi, em casa de vegetação. Fitopatologia Brasileira 29: 97-101.

GRIFFIN MJ & FISHER N. 1985. Laboratory studies on benzimidazole resistance in Septoria tritici. Bulletin OEPP/EPPO 15: 505-511.

ISHII H & HOLLOMAN DW. 2015. Fungicide Resistance in Plant Pathogens: Principles and a Guide to Practical Management. Tokyo: Springer Verlag. 490p.

JONES JB et at. 1991. Compendium of tomato diseases. St. Paul: American Phytopathological Society. 73p.

KOEHLER AM & SHEW HD. 2018. Field efficacy and baseline sensitivity of Septoria steviae to fungicides used for managing Septoria leaf spot of stevia. Crop Protection 109: 95-101.

KUROZAWA C & PAVAN MA. 2005. Doenças do tomateiro (Lycopersicon esculentum). In: KIMATI H et al. Manual de fitopatologia: doenças das plantas cultivadas. 4.ed. São Paulo: Agronômica Ceres. p. 607-626.

LEE DH et al. 2011. Biological Characterization of Marssonina coronaria Associated with Apple blotch disease. Mycobiology 39: 202-205.

KREUZ CL et al. 2004. Análise de estratégias para os tomaticultores da região de Caçador, SC. In: XVII Congresso Brasileiro de Economia e Sociologia Rural. Resumos... Cuiabá, MT.

LUCAS JA et al. 2015. The Evolution of Fungicide Resistance. Advances in Applied Microbiology 90: 29-92.

MILGROOM MG. 2015. Population Biology of Plant Pathogens: Genetics, Ecology and Evolution. St. Paul: American Phytopathological Society Press. 399p.

MORALES-MUÑHOZ AR. 1984. Resistencia del mofo azul Penicillium expansum (Link) a benomyl y thiabendazol em almacenaje de manzanas. Revista Frutícola 4: 87-89.

NASCIMENTO AR et al. 2013. Controle químico da mancha-bacteriana do tomate para processamento industrial em campo. Horticultura Brasileira 31: 15-24.

PAPPAS AC et al. 2010. Sensitivity of Septoria pyricola isolates to carbendazim, DMI and QoI based fungicides and to boscalid, in Greece. Phytopathology Mediterranean 49: 227-238.

PEREIRA RB et al. 2013. Recomendações para o manejo da septoriose em tomateiro. Brasília: Embrapa Hortaliças. 4p. (Comunicado Técnico 96).

R CORE TEAM. 2015. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Disponível em: <http://www.R-project.org/>.

REIS A et al. 2006. Mancha-de-septória: doença limitante do tomateiro no período de chuvas. Brasília: Embrapa Hortaliças. 6p. (Comunicado Técnico 37).

REIS EM & CASA RT. 2007. Doenças dos cereais de inverno: diagnose, epidemiologia e controle. 2.ed. Lages: Graphel. 176p.

REIS E et al. 2010. Manual de fungicidas. 6.ed. Passo Fundo: UPF. 220p.

RUSSEL PE. 2008. Sensitivity baselines in fungicide resistance research and management. Brussels: Crop Life International. 60p.

SARTORATO A. 2006. Sensibilidade in vitro de isolados de Colletotrichum lindemuthianum a fungicidas. Pesquisa agropecuária Tropical 36: 211-213.

STEVENSON WR. 1991. Septoria leaf spot. In: JONES JB et al. (Ed). Compendium of tomato diseases. St. Paul: APS Press. p.22.

ULLOA M & HANLIN RT. 2000. Illustrated dictionary of mycology. St. Paul: American Phytopathological Society. 448p.

VELA-CORCÍA D et al. 2018. Analysis of β-tubulin-carbendazim interaction reveals that binding site for MBC fungicides does not include residues involved in fungicide resistance. Scientific Reports 8: 7161.

Published

2020-06-30

How to Cite

BALDICERA, Alana Karine; BOGO, Amauri; NERBASS, Francine Regianini; BECKER, Walter Ferreira; TREZZI CASA, Ricardo; SILVA, Fábio Nascimento da. Sensitivity of Septoria lycopersici isolates and effectiveness of fungicides for the control of Septoria leaf spot in tomato. Revista de Ciências Agroveterinárias, Lages, v. 19, n. 2, p. 159–170, 2020. DOI: 10.5965/223811711922020159. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/15621. Acesso em: 22 dec. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)

1 2 > >>