Potencial alelopático e fitoquímico do extrato aquoso de Curcuma longa L.: contribuições para a produção de bioherbicidas

Autores

DOI:

https://doi.org/10.5965/223811712322024184

Palavras-chave:

alelopatia, compostos bioativos, fitotoxicidade, controle de plantas daninhas

Resumo

A planta Curcuma longa L. é rica em compostos bioativos. No entanto, há poucos estudos disponíveis que investigaram sua atividade alelopática. Neste trabalho, buscamos investigar preliminarmente os principais grupos químicos com atividade alelopática e bioherbicida presentes no extrato aquoso obtido dos rizomas de C. longa, bem como seu efeito na germinação e no crescimento inicial de plântulas de alface (Lactuca sativa L.) e trigo (Triticum aestivum L.). A análise fitoquímica foi realizada por técnicas de precipitação e colorimétricas. Para determinar o potencial alelopático do extrato, foram testadas sete concentrações (1 a 64 g L-1), além de dois grupos controle: água destilada (controle negativo) e glifosato (controle positivo). As sementes permaneceram em contato com as diferentes concentrações por 72 horas. Os parâmetros avaliados foram: porcentagem de germinação (PG), índice de velocidade de germinação (IVG), comprimento da raiz e da parte aérea das plântulas e concentração inibitória média (IC50). Foram identificados quatro compostos com potencial alelopático: alcaloides, esteroides, flavonoides e terpenos. Os resultados do ensaio biológico revelaram que o extrato aquoso exerceu impacto limitado sobre a PG, apresentando efeitos apenas na concentração mais elevada (64 g L-1), ocasionando redução de 20,70% desse parâmetro em ambas as espécies. Além disso, verificou-se que o índice de velocidade de germinação (IVG) foi significativamente influenciado por concentrações superiores a 4 g L-1 para ambas as espécies. O comprimento da raiz e da parte aérea das plântulas diminuiu com o aumento das doses. O comprimento da parte aérea foi o parâmetro mais sensível, sendo necessária a IC50 de 3,73 e 7,20 g L-1 para o trigo e a alface, respectivamente. Os resultados sugerem que o extrato dessa planta apresenta potencial para a produção de bioherbicidas de pós-emergência.

Downloads

Não há dados estatísticos.

Referências

AKTAR MDW et al. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary toxicology 2: 1-12.

AKTER J et al. 2018. Plant growth inhibitors in turmeric (Curcuma longa) and their effects on Bidens pilosa. Weed Biology and Management 18: 136-145.

AKRAM M et al. 2010. Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol 55: 65-70.

ALWATTAR MT et al. 2023. Terpenoids as Natural Allelopathic Compounds in Plants. Rafidain Journal of Science 32: 106-116.

BACHHETI A et al. 2020. Allelochemical effects of plant respiration and on oxygen discrimination by alternative oxidase. In: MÉRILLON JM & RAMAWATK K. (Ed.) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Berlim: Springer. p.441-457.

BAILEY KL. 2014. The bioherbicide approach to weed control using plant pathogens. In: ABROL DP. Integrated Pest Management. Cambridge: Academic Press. p. 245-266.

BEWLEY JD et al. 2012. Seeds: physiology of development, germination and dormancy. 3 ed. New York: Springer.

BRILLAS E. 2021. Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. Journal of Cleaner Production 290: 125841.

CHANDEL et al. 2011. Standardization of some herbal antidiabetic drugs in polyherbal formulation. Pharmacognosy research 3: 49-56.

CHAKRABORTY B & SENGUPTA M. 2012. Boosting of nonspecific host response by aromatic spices turmeric and ginger in immunocompromised mice. Cellular immunology 280: 92-100.

CIMMINO A et al. 2014. Phytotoxic terpenes produced by phytopathogenic fungi and allelopathic plants. Natural product communications 9: 1934578X1400900330.

CUSHNIE TPT et al. 2014. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. International journal of antimicrobial agents 44: 377-386.

DA SILVA LM et al. 2023. Avaliação da toxicidade, citotoxicidade e genotoxicidade do infuso dos rizomas de Curcuma longa L. (Zingiberaceae). Revista Fitos 17: 9-17.

DAYAN FE et al. 2015. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action. Frontiers in Plant Science 6: 1-11.

DAYAN FE 2019. Current status and future prospects in herbicide discovery. Plants, 8: 341.

DE SOUZA BARROS VM et al. 2021. Herbicides of biological origin: A review. The Journal of Horticultural Science and Biotechnology 96: 288-296.

FALCONE FERREYRA ML et al. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in plant science 3: 222.

FERREIRA DF. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35: 1039-1042.

FILIPPIN KJ et al. 2018. Cytotoxic alkaloids from Pogonopus tubulosus: G2/M cell cycle arrest and inhibition of DNA topoisomerase IIα by isotubulosine. Phytotherapy Research 32: 943-948.

GHARDE Y et al. 2018. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Protection 107: 12-18.

GANDHI K et al. 2021. Exposure risk and environmental impacts of glyphosate: Highlights on the toxicity of herbicide co-formulants. Environmental Challenges 4: 100149.

GOVIND P. 2011. Active principles and median lethal dose of Curcuma longa Linn. International Research Journal of Pharmacy 2: 239-241.

GUPTA PK. 2018. Toxicity of herbicides. In: GUPTA RC. Veterinary toxicology. Basic and Clinical Principles. Cambridge: Academic Press. p. 553-567.

HARBORONE JB et al. 1999. Phytochemical dictionary: handbook of bioactive compounds from plants. 2. ed. London: Taylor & Francis.

HASAN M et al. 2021. Bioherbicides: An eco-friendly tool for sustainable weed management. Plants 10: 1212.

HORVATH DP et al. 2023. Weed-induced crop yield loss: a new paradigm and new challenges. Trends in Plant Science 28: 567-582.

HOSNI K et al. 2013. Secondary metabolites from Chrysanthemum coronarium (Garland) flowerheads: Chemical composition and biological activities. Industrial Crops and Products 44: 263-271.

HUSSAIN WS. 2020. Allelopathy: Allelochemicals a brief review. Plant Archives 20: 5556-5560.

IBÁÑEZ MD & BLÁZQUEZ MA. 2019. Ginger and turmeric essential oils for weed control and food crop protection. Plants 8: 59.

KOSTINA-BEDNARZ M et al. 2023. Allelopathy as a source of bioherbicides: challenges and prospects for sustainable agriculture. Reviews in Environmental Science and Bio/Technology 22: 1-34.

LAL J. 2012. Turmeric, curcumin and our life: A review. Bulletin of Environment, Pharmacology and Life Sciences 1: 11-17.

LEDERER B et al. 2004. Phytotoxic activity of middle-chain fatty acids II: peroxidation and membrane effects. Pesticide Biochemistry and Physiology 80: 151-156.

LORENZI H & MATOS FJA. 2021. Plantas medicinais no Brasil. Nativas e exóticas. 3.ed. Plantarum: Nova Odessa.

MACÍAS FA et al. 2019. Recent advances in allelopathy for weed control: From knowledge to applications. Pest management science 75: 2413-2436.

MATOS FJA. 2009. Introdução à Fitoquímica Experimental. 3. ed. UFC: Fortaleza.

MAURYA P et al. 2022. Medicinal and aromatic plants as an emerging source of bioherbicides. Current Science 122: 258-266.

MEHDIZADEH M et al. 2021. Herbicide residues in agroecosystems: Fate, detection, and effect on non-target plants. Reviews in Agricultural Science 9: 157-167.

NABAVI SM et al. 2020. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology advances 38: 107316.

NICHOLS V et al. 2015. Weed dynamics and conservation agriculture principles: A review. Field crops research 183: 56-68.

OECD. 2006. Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test, OECD Guidelines for the Testing of Chemicals. Section 2. Paris: OECD Publishing.

OGUNSUSI M et al. 2018. Allelopathic effects of alkaloid fraction of Crotalaria retusa Linn on growth and some biochemical parameters of bean seedlings (Phaseolus vulgaris. International Journal of Plant Physiology and Biochemistry 10: 1-9.

PÉREZ‐DE‐LUQUE A. 2023. Can nanotechnology improve the application of bioherbicides? Pest Management Science 1: 1-7.

PIRES NM & OLIVEIRA VR. 2001. Alelopatia. In: OLIVEIRA JRRS, CONSTANTIN J, INOUE MH (Ed.). Biologia e Manejo de Plantas Daninhas. Curitiba: Omnipax. p.145-185.

RADHAKRISHNAN R et al. 2016. Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth. Microbiological research 193: 132-139.

SAJITHA TP et al. 2018. Mechanism of resistance to camptothecin, a cytotoxic plant secondary metabolite, by Lymantria sp. larvae. Journal of chemical ecology 44: 611-620.

SHAHRAJABIAN MH et al. 2019. Germination and seedlings growth of corn (Zea mays L.) to allelopathic effects of rice (Oryza sativa L.). Tropical Plant Research 6: 152-156.

SHI QIU et al. 2014. Natural alkaloids: basic aspects, biological roles, and future perspectives. Chinese Journal of Natural Medicines 12: 401-406.

SILVA LN et al. 2016. Plant natural products targeting bacterial virulence factors. Chemical reviews 116: 9162-9236.

SIMÕES CMO et al. 2016. Farmacognosia: do produto natural ao medicamento. 1.ed. Porto Alegre: Artmed.

TAIZ L & ZEIGER E. 2017. Fisiologia e desenvolvimento vegetal. 6.ed. Porto Alegre: Artmed.

THIMMAPPA R et al. 2014.Triterpene biosynthesis in plants. Annual review of plant biology 65: 225-257.

UTHAYARASA K et al. 2010. Antibacterial activity and qualitative phytochemical analysis of medicinal plant extracts obtained by sequential extraction method. International Journal of Integrative Biology 10: 76-81.

WANG C et al. 2022. Effects of autotoxicity and allelopathy on seed germination and seedling growth in Medicago truncatula. Frontiers in Plant Science 13: 908426.

WEI M et al. 2020. Combined allelopathy of Canada goldenrod and horseweed on the seed germination and seedling growth performance of lettuce. Landscape and Ecological Engineering 16: 299-306.

WESTON LA & MATHESIUS U. 2013. Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. Journal of chemical ecology 39: 283-297.

YADAV RP & TARUN G. 2017. Versatility of turmeric: A review the golden spice of life. Journal of Pharmacognosy and Phytochemistry 6: 41-46.

YANO S et al. 2000. Antiallergic activity of Curcuma longa (I) Effectiveness of extracts containing curcuminoids. Natural Medicines 54: 318-324.

Publicado

2024-09-13

Como Citar

SILVA, Leonardo Mendes da; MATILDE, Marcela Emiliano Novaes; SILVA, Fábio Junio da. Potencial alelopático e fitoquímico do extrato aquoso de Curcuma longa L.: contribuições para a produção de bioherbicidas. Revista de Ciências Agroveterinárias, Lages, v. 23, n. 2, p. 184–195, 2024. DOI: 10.5965/223811712322024184. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/24902. Acesso em: 27 set. 2024.

Edição

Seção

Artigo de Pesquisa - Ciência de Plantas e Produtos Derivados