Potencial alelopático e fitoquímico do extrato aquoso de Curcuma longa L.: contribuições para a produção de bioherbicidas
DOI:
https://doi.org/10.5965/223811712322024184Palavras-chave:
alelopatia, compostos bioativos, fitotoxicidade, controle de plantas daninhasResumo
A planta Curcuma longa L. é rica em compostos bioativos. No entanto, há poucos estudos disponíveis que investigaram sua atividade alelopática. Neste trabalho, buscamos investigar preliminarmente os principais grupos químicos com atividade alelopática e bioherbicida presentes no extrato aquoso obtido dos rizomas de C. longa, bem como seu efeito na germinação e no crescimento inicial de plântulas de alface (Lactuca sativa L.) e trigo (Triticum aestivum L.). A análise fitoquímica foi realizada por técnicas de precipitação e colorimétricas. Para determinar o potencial alelopático do extrato, foram testadas sete concentrações (1 a 64 g L-1), além de dois grupos controle: água destilada (controle negativo) e glifosato (controle positivo). As sementes permaneceram em contato com as diferentes concentrações por 72 horas. Os parâmetros avaliados foram: porcentagem de germinação (PG), índice de velocidade de germinação (IVG), comprimento da raiz e da parte aérea das plântulas e concentração inibitória média (IC50). Foram identificados quatro compostos com potencial alelopático: alcaloides, esteroides, flavonoides e terpenos. Os resultados do ensaio biológico revelaram que o extrato aquoso exerceu impacto limitado sobre a PG, apresentando efeitos apenas na concentração mais elevada (64 g L-1), ocasionando redução de 20,70% desse parâmetro em ambas as espécies. Além disso, verificou-se que o índice de velocidade de germinação (IVG) foi significativamente influenciado por concentrações superiores a 4 g L-1 para ambas as espécies. O comprimento da raiz e da parte aérea das plântulas diminuiu com o aumento das doses. O comprimento da parte aérea foi o parâmetro mais sensível, sendo necessária a IC50 de 3,73 e 7,20 g L-1 para o trigo e a alface, respectivamente. Os resultados sugerem que o extrato dessa planta apresenta potencial para a produção de bioherbicidas de pós-emergência.
Downloads
Referências
AKTAR MDW et al. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary toxicology 2: 1-12.
AKTER J et al. 2018. Plant growth inhibitors in turmeric (Curcuma longa) and their effects on Bidens pilosa. Weed Biology and Management 18: 136-145.
AKRAM M et al. 2010. Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol 55: 65-70.
ALWATTAR MT et al. 2023. Terpenoids as Natural Allelopathic Compounds in Plants. Rafidain Journal of Science 32: 106-116.
BACHHETI A et al. 2020. Allelochemical effects of plant respiration and on oxygen discrimination by alternative oxidase. In: MÉRILLON JM & RAMAWATK K. (Ed.) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Berlim: Springer. p.441-457.
BAILEY KL. 2014. The bioherbicide approach to weed control using plant pathogens. In: ABROL DP. Integrated Pest Management. Cambridge: Academic Press. p. 245-266.
BEWLEY JD et al. 2012. Seeds: physiology of development, germination and dormancy. 3 ed. New York: Springer.
BRILLAS E. 2021. Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. Journal of Cleaner Production 290: 125841.
CHANDEL et al. 2011. Standardization of some herbal antidiabetic drugs in polyherbal formulation. Pharmacognosy research 3: 49-56.
CHAKRABORTY B & SENGUPTA M. 2012. Boosting of nonspecific host response by aromatic spices turmeric and ginger in immunocompromised mice. Cellular immunology 280: 92-100.
CIMMINO A et al. 2014. Phytotoxic terpenes produced by phytopathogenic fungi and allelopathic plants. Natural product communications 9: 1934578X1400900330.
CUSHNIE TPT et al. 2014. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. International journal of antimicrobial agents 44: 377-386.
DA SILVA LM et al. 2023. Avaliação da toxicidade, citotoxicidade e genotoxicidade do infuso dos rizomas de Curcuma longa L. (Zingiberaceae). Revista Fitos 17: 9-17.
DAYAN FE et al. 2015. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action. Frontiers in Plant Science 6: 1-11.
DAYAN FE 2019. Current status and future prospects in herbicide discovery. Plants, 8: 341.
DE SOUZA BARROS VM et al. 2021. Herbicides of biological origin: A review. The Journal of Horticultural Science and Biotechnology 96: 288-296.
FALCONE FERREYRA ML et al. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in plant science 3: 222.
FERREIRA DF. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35: 1039-1042.
FILIPPIN KJ et al. 2018. Cytotoxic alkaloids from Pogonopus tubulosus: G2/M cell cycle arrest and inhibition of DNA topoisomerase IIα by isotubulosine. Phytotherapy Research 32: 943-948.
GHARDE Y et al. 2018. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Protection 107: 12-18.
GANDHI K et al. 2021. Exposure risk and environmental impacts of glyphosate: Highlights on the toxicity of herbicide co-formulants. Environmental Challenges 4: 100149.
GOVIND P. 2011. Active principles and median lethal dose of Curcuma longa Linn. International Research Journal of Pharmacy 2: 239-241.
GUPTA PK. 2018. Toxicity of herbicides. In: GUPTA RC. Veterinary toxicology. Basic and Clinical Principles. Cambridge: Academic Press. p. 553-567.
HARBORONE JB et al. 1999. Phytochemical dictionary: handbook of bioactive compounds from plants. 2. ed. London: Taylor & Francis.
HASAN M et al. 2021. Bioherbicides: An eco-friendly tool for sustainable weed management. Plants 10: 1212.
HORVATH DP et al. 2023. Weed-induced crop yield loss: a new paradigm and new challenges. Trends in Plant Science 28: 567-582.
HOSNI K et al. 2013. Secondary metabolites from Chrysanthemum coronarium (Garland) flowerheads: Chemical composition and biological activities. Industrial Crops and Products 44: 263-271.
HUSSAIN WS. 2020. Allelopathy: Allelochemicals a brief review. Plant Archives 20: 5556-5560.
IBÁÑEZ MD & BLÁZQUEZ MA. 2019. Ginger and turmeric essential oils for weed control and food crop protection. Plants 8: 59.
KOSTINA-BEDNARZ M et al. 2023. Allelopathy as a source of bioherbicides: challenges and prospects for sustainable agriculture. Reviews in Environmental Science and Bio/Technology 22: 1-34.
LAL J. 2012. Turmeric, curcumin and our life: A review. Bulletin of Environment, Pharmacology and Life Sciences 1: 11-17.
LEDERER B et al. 2004. Phytotoxic activity of middle-chain fatty acids II: peroxidation and membrane effects. Pesticide Biochemistry and Physiology 80: 151-156.
LORENZI H & MATOS FJA. 2021. Plantas medicinais no Brasil. Nativas e exóticas. 3.ed. Plantarum: Nova Odessa.
MACÍAS FA et al. 2019. Recent advances in allelopathy for weed control: From knowledge to applications. Pest management science 75: 2413-2436.
MATOS FJA. 2009. Introdução à Fitoquímica Experimental. 3. ed. UFC: Fortaleza.
MAURYA P et al. 2022. Medicinal and aromatic plants as an emerging source of bioherbicides. Current Science 122: 258-266.
MEHDIZADEH M et al. 2021. Herbicide residues in agroecosystems: Fate, detection, and effect on non-target plants. Reviews in Agricultural Science 9: 157-167.
NABAVI SM et al. 2020. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology advances 38: 107316.
NICHOLS V et al. 2015. Weed dynamics and conservation agriculture principles: A review. Field crops research 183: 56-68.
OECD. 2006. Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test, OECD Guidelines for the Testing of Chemicals. Section 2. Paris: OECD Publishing.
OGUNSUSI M et al. 2018. Allelopathic effects of alkaloid fraction of Crotalaria retusa Linn on growth and some biochemical parameters of bean seedlings (Phaseolus vulgaris. International Journal of Plant Physiology and Biochemistry 10: 1-9.
PÉREZ‐DE‐LUQUE A. 2023. Can nanotechnology improve the application of bioherbicides? Pest Management Science 1: 1-7.
PIRES NM & OLIVEIRA VR. 2001. Alelopatia. In: OLIVEIRA JRRS, CONSTANTIN J, INOUE MH (Ed.). Biologia e Manejo de Plantas Daninhas. Curitiba: Omnipax. p.145-185.
RADHAKRISHNAN R et al. 2016. Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth. Microbiological research 193: 132-139.
SAJITHA TP et al. 2018. Mechanism of resistance to camptothecin, a cytotoxic plant secondary metabolite, by Lymantria sp. larvae. Journal of chemical ecology 44: 611-620.
SHAHRAJABIAN MH et al. 2019. Germination and seedlings growth of corn (Zea mays L.) to allelopathic effects of rice (Oryza sativa L.). Tropical Plant Research 6: 152-156.
SHI QIU et al. 2014. Natural alkaloids: basic aspects, biological roles, and future perspectives. Chinese Journal of Natural Medicines 12: 401-406.
SILVA LN et al. 2016. Plant natural products targeting bacterial virulence factors. Chemical reviews 116: 9162-9236.
SIMÕES CMO et al. 2016. Farmacognosia: do produto natural ao medicamento. 1.ed. Porto Alegre: Artmed.
TAIZ L & ZEIGER E. 2017. Fisiologia e desenvolvimento vegetal. 6.ed. Porto Alegre: Artmed.
THIMMAPPA R et al. 2014.Triterpene biosynthesis in plants. Annual review of plant biology 65: 225-257.
UTHAYARASA K et al. 2010. Antibacterial activity and qualitative phytochemical analysis of medicinal plant extracts obtained by sequential extraction method. International Journal of Integrative Biology 10: 76-81.
WANG C et al. 2022. Effects of autotoxicity and allelopathy on seed germination and seedling growth in Medicago truncatula. Frontiers in Plant Science 13: 908426.
WEI M et al. 2020. Combined allelopathy of Canada goldenrod and horseweed on the seed germination and seedling growth performance of lettuce. Landscape and Ecological Engineering 16: 299-306.
WESTON LA & MATHESIUS U. 2013. Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. Journal of chemical ecology 39: 283-297.
YADAV RP & TARUN G. 2017. Versatility of turmeric: A review the golden spice of life. Journal of Pharmacognosy and Phytochemistry 6: 41-46.
YANO S et al. 2000. Antiallergic activity of Curcuma longa (I) Effectiveness of extracts containing curcuminoids. Natural Medicines 54: 318-324.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Autores e Revista de Ciências Agroveterinárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Os autores que publicam nesta revista estão de acordo com os seguintes termos:
a) Os autores mantêm os direitos autorais e concedem à revista os direitos autorais da primeira publicação, de acordo com a Creative Commons Attribution Licence. Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição BY.
b) Autores têm autoridade para assumir contratos adicionais com o conteúdo do manuscrito.
c) Os autores podem fornecer e distribuir o manuscrito publicado por esta revista.