Perfil Farmacocinético da Norfloxacina em Pombos

Autores

DOI:

https://doi.org/10.5965/223811712232023470

Palavras-chave:

Farmacocinética, análise compartimental, Norfloxacina, pombo

Resumo

Através deste trabalho, a farmacocinética da Norfloxacina em pombos foi explorada usando seis pombos machos saudáveis como sujeitos para este estudo. Os índices farmacocinéticos da norfloxacina, administrada por via oral, foram obtidos por ensaio microbiológico e, em seguida, os dados foram ajustados ao modelo aberto de farmacocinética de dois compartimentos para avaliar os parâmetros de distribuição e excreção. Nos resultados obtidos, a taxa constante de absorção (Kab) calculada foi de 1,26 h-1, a concentração máxima alcançada da Norfloxacina foi de 2,75 μg/ml em 1,34 h, o volume de distribuição (Vd/F) foi de 3,15 L/kg. A meia-vida (t1/2β) foi de 4,9 h, a área calculada sob a curva de concentração da Norfloxacina (AUC0-t) foi de 16,75 (h*μg)/ml, enquanto a depuração da Norfloxacina (Cl/F) foi de 0,49 L/h/kg. Em conclusão, os parâmetros farmacocinéticos da Norfloxacina em pombos não estão muito longe de outras aves, como galinhas, considerando as diferenças entre eles. A norfloxacina é um agente antibacteriano valioso contra infecções bacterianas susceptíveis, dependendo do perfil farmacocinético obtido.

Downloads

Não há dados estatísticos.

Referências

AKINS CK et al. 2005. Laboratory animals in research and teaching: Ethics, care, and methods. Washington: American Psychological Association.

AL-JUMAILI MAJ & IBRAHIM OMS. 2021. Pharmacokinetic Parameters of Meropenem in the Plasma and Milk of Ewes. Indian Journal of Forensic Medicine & Toxicology 15: 8p.

AL-MUSTAFA ZH & AL-GHAMDI MS. 2000. Use of norfloxacin in poultry production in the eastern province of Saudi Arabia and its possible impact on public health. International Journal of Environmental Health Research 10: 291–299.

BIDGOOD T & PAPICH MG. 2002. Plasma pharmacokinetics and tissue fluid concentrations of meropenem after intravenous and subcutaneous administration in dogs. American Journal of Veterinary Research 63: 1622–1628.

BLAND J et al. 1983. Bioassay procedures for norfloxacin. European Journal of Clinical Microbiology 2: 249–252.

CHIFIRIUC MC et al. 2016. Antibiotic drug delivery systems for the intracellular targeting of bacterial pathogens. In Smart drug delivery system. IntechOpen.

CRAIG WA. 1986. Protein binding and the antimicrobial effects: Methods for the determination of protein binding. Antibiotics in Laboratory Medicine: 477–514.

DORRESTEIN GM et al. 1983. Clinical pharmacology and pharmacokinetics of flumequine after intravenous, intramuscular and oral administration in pigeons (Columba livia). Journal of Veterinary Pharmacology and Therapeutics 6: 281–292.

EZELARAB HAA et al. 2018. Recent updates of fluoroquinolones as antibacterial agents. Archiv Der Pharmazie 351: 1800141.

FAN YL et al. 2018. Fluoroquinolone derivatives and their anti-tubercular activities. European Journal of Medicinal Chemistry 146: 554–563.

HAQ KU et al. 2015. Comparative efficacy of Norfloxacin, Clarithromycin and Cefpodoxime against experimentally induced colibacillosis in pigeons. American-Eurasian Journal of Toxicological Sciences 7: 72–82.

HARITOVA AM & LASHEV LD. 2009. Comparison of the pharmacokinetics of seven fluoroquinolones in mammalian and bird species using allometric analysis. Bulgarian Journal of Veterinary Medicine 12: 3-24.

HARLIN R & WADE L. 2009. Bacterial and Parasitic Diseases of Columbiformes. Veterinary Clinics of North America: Exotic Animal Practice 12: 453–473.

HRUBA H et al. 2019. Reproductive toxicity of fluoroquinolones in birds. BMC Veterinary Research 15: 209.

HU YQ et al. 2017. 4-Quinolone hybrids and their antibacterial activities. European Journal of Medicinal Chemistry 141: 335–345.

JONES T et al. 2016. Focus on JNJ-Q2, a novel fluoroquinolone, for the management of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. Infection and Drug Resistance 9: 119.128.

KABIR A. 2020. King Pigeons can be the king of meat in Bangladesh. Journal of Agricultural 7: 6–9.

KABIR L. 2010. Avian Colibacillosis and Salmonellosis: A Closer Look at Epidemiology, Pathogenesis, Diagnosis, Control and Public Health Concerns. International Journal of Environmental Research and Public Health 7: 89–114.

KHAFAJI BSA et al. 1999. Pharmacokinetics of ciprofloxacin in layer chicks. The Iraqi Journal of Veterinary Medicine 23: Article 1.

LEVISON ME & LEVISON JH. 2009. Pharmacokinetics and Pharmacodynamics of Antibacterial Agents. Infectious Disease Clinics of North America 23: 791–815.

MOUTAFCHIEVA R et al. 2009. Comparative pharmacokinetics of pefloxacin in chickens, pheasants and pigeons. Trakia Journal of Sciences 7: 44-48.

OIE W. 2015. OIE list of antimicrobial agents of veterinary importance. J. OIE Int. Commit.33: 1–9.

ROSENBAUM SE. 2016. Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations. John Wiley & Sons.

RYU R & HEBERT MF. 2022. Chapter 3—Impact of pregnancy on maternal pharmacokinetics of medications. In MATTISON D & HALBERT LA. (Eds.) Clinical Pharmacology During Pregnancy 2.ed. p.19–46. Academic Press.

SANDULOVICI R et al. 2009. Mathematical and phenomenological criteria in selection of pharmacokinetic model for M1 metabolite of pentoxyphylline. Farmacia 57: 235–246.

SAUNDERS LJ et al. 2012. The Coefficient of Determination: What Determines a Useful R 2 Statistic? Investigative Ophthalmology & Visual Science 53: 6830–6832.

SMITH DA et al. 2015. Volume of Distribution in Drug Design. Journal of Medicinal Chemistry 58: 5691–5698.

UVAROVA NE et al. 2019. Comparison of FDA (2018) and EAEU Regulatory Requirements for Bioanalytical Method Validation. Pharmaceutical Chemistry Journal 53: 759–765.

WISPELWEY B. 2005. Clinical implications of pharmacokinetics and pharmacodynamics of fluoroquinolones. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 41: 127-135.

YAMAOKA K et al. 1978. Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. Journal of Pharmacokinetics and Biopharmaceutics 6: 165–175.

ZEITLINGER MA et al. 2004. Impact of plasma protein binding on antimicrobial activity using time-killing curves. The Journal of Antimicrobial Chemotherapy 54: 876–880.

ZLOTOS G et al. 1998. Plasma protein binding of gyrase inhibitors. Journal of Pharmaceutical Sciences 87: 215–220.

Downloads

Publicado

2023-08-04

Como Citar

AL-JUMAILI, Mustafa Ahmed Jasim; ALABBAS, Nibras Naeb Abdulhamza; IBRAHIM, Orooba M. S. Perfil Farmacocinético da Norfloxacina em Pombos. Revista de Ciências Agroveterinárias, Lages, v. 22, n. 3, p. 470–474, 2023. DOI: 10.5965/223811712232023470. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/23393. Acesso em: 21 nov. 2024.

Edição

Seção

Artigo de Pesquisa - Ciência de Animais e Produtos Derivados