Functional diversity of bacteria isolated from rhizosphere and non-rhizosphere soils under maize cultivation

Authors

  • Rodrigo Ferraz Ramos Universidade Federal da Fronteira Sul (UFFS) - Campus Cerro Largo/RS
  • Lisiane Sobucki Universidade Federal da Fronteira Sul (UFFS) - Campus Cerro Largo/RS
  • Bruna Rohrig Universidade Federal da Fronteira Sul (UFFS) - Campus Cerro Largo/RS
  • Juliane Ludwig Universidade Federal da Fronteira Sul (UFFS) - Campus Cerro Largo/RS
  • Daniel Joner Daroit Universidade Federal da Fronteira Sul (UFFS) - Campus Cerro Largo/RS

DOI:

https://doi.org/10.5965/223811711732018417

Keywords:

soil microbiota, enzymes, phosphate solubilization, bioprospecting

Abstract

This study evaluated the hydrolytic and phosphate-solubilizing potentials of soil bacteria isolated from a red latosol (oxisol) under maize cultivation. Rhizosphere soil (SR) and non-rhizosphere soil (NR) were collected and, subsequently, distinct bacterial colonies were isolated in pure cultures. Solid culture media were employed to evaluate production of hydrolases and phosphate solubilization by the isolates. From SR and NR, 30 and 19 distinct colonial types were isolated, respectively. From 29 SR isolates, 68.9%, 65.5%, 20.7% and 24.1% displayed proteolytic, cellulolytic, amylolytic, and phosphate-solubilizing activities, respectively. From the NR isolates, 57.9% produced cellulase, 42.1% protease, 57.9% amylase and 21.0% solubilized phosphate; however, 31.6% of these isolates did not display any activity. Diverse bacteria presented combined activities, representing about 58% of the SR and NR isolates. In addition to environmental and agricultural relevance, the microbial ability to secrete enzymes related to carbon and nitrogen cycles and phosphate solubilization might be important from a biotechnological perspective.

Downloads

Download data is not yet available.

References

AHMAD N et al. 2013. Function and phylogenetic characterization of rhizospheric bacteria associated with GM and non GM maize. Pakistan Journal of Botany 45: 1781-1788.

AMARANTE CB et al. 2010. Diversidade microbiana em solos de Terra Preta Arqueológica. Enciclopédia Biosfera 6: 1-10.

ANDREOLA F & FERNANDES SAP. 2007. A microbiota do solo na agricultura orgânica e no manejo das culturas. In: SILVEIRA APD & FREITAS SS. Microbiota do solo e qualidade ambiental. Campinas: Instituto Agronômico. p.21-37.

ARAUJO FF et al. 2012. Bioprospecção de rizobactérias promotoras de crescimento em Brachiaria brizantha. Revista Brasileira de Zootecnia 41: 521-527.

ARIAS ME et al. 2005. Soil health – a new challenge for microbiologists and chemists. International Microbiology 8: 13-21.

ARRUDA L et al. 2013. Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Applied Soil Ecology 63: 15-22.

BANDICK AK & DICK RP. 1999. Field management effects on soil enzyme activities. Soil Biology & Biochemistry 31: 1471-1479.

BURNS RG et al. 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry 58: 216-234.

CANTERI MG et al. 2001. SASM-AGRI - Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Scott-Knott, Tukey e Duncan. Revista Brasileira de Agrocomputação 1: 18-24.

CARDOSO EJBN & NOGUEIRA MA. 2007. A rizosfera e seus efeitos na comunidade microbiana e na nutrição de plantas. In: SILVEIRA APD & FREITAS SS. Microbiota do solo e qualidade ambiental. Campinas: Instituto Agronômico. p.79-96.

CENCIANI K et al. 2011. Enzymatic activity measured by microcalorimetry in soil amended with organic residues. Revista Brasileira de Ciência do Solo 35: 1167-1175.

CHAGAS JUNIOR AF et al. 2010. Capacidade de solubilização de fosfatos e eficiência simbiótica de rizóbios isolados de solos da Amazônia. Acta Scientiarum Agronomy 32: 359-366.

CORDEIRO MAS et al. 2012. Atributos bioquímicos e químicos do solo rizosférico e não rizosférico de culturas em rotação no sistema de semeadura direta. Revista Brasileira de Ciência do Solo 36: 1794-1803.

DAS SK & VARMA A. 2011. Role of enzymes in maintaining soil health. In: SHUKLA G & VARMA A. Soil Enzymology. Berlin: Springer-Verlag. p.25-42.

DJURIC S et al. 2011. Selection of indigenous fluorescent pseudomonad isolates from maize rhizospheric soil in Vojvodina as possible PGPR. Romanian Biotechnological Letters 16: 6580-6590.

EMBRAPA. 2013. Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos. 3ed. Rio de Janeiro: Embrapa Solos. 353p.

FIGUEROA-LÓPEZ AM et al. 2016. Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. SpringerPlus 5: 330.

FISCHER SE et al. 2007. Isolation and characterization of bacteria from the rhizosphere of wheat. World Journal of Microbiology and Biotechnology 23: 895-903.

FREITAS VR & PICOLI SU 2007. A coloração de Gram e as variações na sua execução. Newslab 82: 124-128.

GORLACH-LIRA K & COUTINHO HDM. 2007. Population dynamics and extracellular enzymes activity of mesophilic and thermophilic bacteria isolated from semi-arid soil of northeastern Brazil. Brazilian Journal of Microbiology 38: 135-141.

GHOSH A et al. 2007. Bacterial diversity of East Calcutta wet land area: possible identification of potential bacterial population for different biotechnological uses. Microbial Ecology 54: 452-459.

GYANESHWAR P et al. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245: 83-93.

JEONG JH et al. 2010. Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil. Biodegradation 21: 1029-1040.

JURBURG SD & SALLES JF. 2015. Functional redundancy and ecosystem function - The soil microbiota as a case study. In: LO YH et al. Biodiversity in ecosystems - linking structure and function. Rijeka: Intech. p. 29-49.

KASANA RC et al. 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Current Microbiology 57: 503-507.

KAUR A et al. 2012. Isolation, characterization and identification of bacterial strain producing amylase. Journal of Microbiology and Biotechnology Research 2: 573-579.

KHAN MS et al. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture - a review. Agronomy for Sustainable Development 27: 29-43.

KUKLINSKY-SOBRAL J et al. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology 6: 1244-1251.

LI X et al. 2014. Functional potential of soil microbial communities in the maize rhizosphere. PLOS ONE 9: article e112609.

MAKI M et al. 2009. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass.

International Journal of Biological Sciences 5: 500-516.

MANHÃES CMC & FRANCELINO FMA. 2013. Biota do solo e suas relações ecológicas com o sistema radicular. Nucleus 10: 127-137.

MANZOOR M et al. 2017. Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization–mineralization and plant growth promotion. Geomicrobiology 34: 81-95.

MOREIRA FMS & SIQUEIRA JO. 2006. Microbiologia e Bioquímica do Solo. 2.ed. Lavras: UFLA. 729p.

NAHAS E et al. 1997. Atividade microbiana e propriedades bioquímicas do solo resultantes da aplicação de gesso agrícola na cultura do repolho. Scientia Agricola 54: 160-166.

OLIVEIRA AN et al. 2006a. Enzimas hidrolíticas extracelulares de isolados de rizóbia nativos da Amazônia Central, Amazonas, Brasil. Ciência e Tecnologia de Alimentos 26: 853-860.

OLIVEIRA AN et al. 2006b. Atividade enzimática de isolados de rizóbia nativos da Amazônia Central crescendo em diferentes níveis de acidez. Ciência e Tecnologia de Alimentos 26: 204-210.

PASCON RC et al. 2011. Amylolytic microorganism from São Paulo Zoo composting: isolation, identification, and amylase production. Enzyme Research 2011: article 679624.

PEDRINHO EAN et al. 2010. Identificação e avaliação de rizobactérias isoladas de raízes de milho. Bragantia 69:905-911.

PEREIRA SIA & CASTRO PML. 2014. Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environmental Science and Pollution Research 21: 14110-14123.

RAMOS MLG et al. 2012. Efeito dos sistemas de manejo e plantio sobre a densidade de grupos funcionais de microrganismos, em solo de Cerrado. Bioscience Journal 28: 58-68.

RIFFEL A & BRANDELLI A. 2006. Keratinolytic bacteria isolated from feather waste. Brazilian Journal of Microbiology 37: 395-399.

RODRIGUES AA et al. 2016. Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesquisa Agropecuária Tropical 46: 149-158.

SANCHEZ S & DEMAIN AL. 2011. Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Organic Process Research & Development 15: 224-230.

SANOMIYA LT & NAHAS E. 2003. Microrganismos produtores de hidrolases envolvidos nas transformações dos compostos do carbono e do nitrogênio do solo. Ciência Rural 33:835-842.

SANTOS EO & MARTINS MLL. 2003. Effect of the medium composition on formation of amylase by Bacillus sp. Brazilian Archives of Biology and Technology 46: 129-134.

SHAN Q et al. 2008. Soil enzymes activities and their indication for fertility of urban forest soil. Frontiers of Environmental Science & Engineering in China 2: 218-223.

SHARMA SB et al. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2: article 587.

SILVA P & NAHAS E. 2002. Bacterial diversity in soil in response to different plants, phosphate fertilizers and liming. Brazilian Journal of Microbiology 33: 304-310.

SOUCHIE EL & ABBOUD ACS. 2007. Solubilização de fosfato por microrganismos rizosféricos de genótipos de Guandu cultivados em diferentes classes de solo. Semina: Ciências Agrárias 28: 11-18.

SZILAGYI-ZECCHIN VJ et al. 2014. Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 4: article 26.

TURNBULL AL et al. 2012. Isolation of bacteria from the rhizosphere and rhizoplane of potato (Solanum tuberosum) grown in two distinct soils using semi selective media and characterization of their biological properties. American Journal of Potato Research 89: 294-305.

VIANA LT et al. 2011. Microbial communities in Cerrado soils under native vegetation subjected to prescribed fire and under pasture. Pesquisa Agropecuária Brasileira 46: 1665-1672.

Published

2018-09-26

How to Cite

RAMOS, Rodrigo Ferraz; SOBUCKI, Lisiane; ROHRIG, Bruna; LUDWIG, Juliane; DAROIT, Daniel Joner. Functional diversity of bacteria isolated from rhizosphere and non-rhizosphere soils under maize cultivation. Revista de Ciências Agroveterinárias, Lages, v. 17, n. 3, p. 417–427, 2018. DOI: 10.5965/223811711732018417. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/9284. Acesso em: 21 nov. 2024.

Issue

Section

Research Article - Multisections and Related Areas

Most read articles by the same author(s)