Vermicompost bioenriched whit Trichoderma spp.

Authors

DOI:

https://doi.org/10.5965/223811711712018107

Keywords:

organic fertilizers, Eisenia foetida, composting, worm composting, substrates for biological treatment, Trichoderma

Abstract

The intensification of agropastoral activity leads to a high production of waste. The composting of these residues produces an agricultural input with high potential in the production of vegetables and with the possibility of association with organisms of biological control, allowing the production of an ecologically correct substrate, rich in nutrients and protector of the health of the plants. In this sense, the objective of this work was to evaluate the survival of the fungus Trichoderma spp. During the vermicompost process, as the physical / chemical development caused not substrate and the growth and development of lettuce plants grown in the different treatments used. Basal substrates were obtained from the creation of three different animals: sheep, Horses and rabbits, whether or not containing added Trichoderma spp. In all treatments, worms of Eisenia foetida were added. Evaluations of fungus survival, physical and chemical analyzes of the substrate produced and evaluation without growth and development of lettuce plants were carried out. The treatments were arranged in a 3x2 factorial scheme and the experimental design was completely randomized, with 4 replicates. Data were analyzed using Sisvar® software, and as means averages compared by Scott Knott's test at 5% error probability. Trichoderma spp. It survives the vermicompost process by improving the development of lettuce plants when associated with farms residue. The use of Trichoderma spp. It reduced the calcium values of all substrates, raised a dry density of the base substrate of rabbit residues, and reduced the base substrate of farmyard residues. The substrate that provided the best growth and development of lettuce plants was the residues of rearing of horses, being favored by the presence of Trichoderma spp. in the second year.

Downloads

Download data is not yet available.

References

AIRA M et al. 2007. Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microbial Ecology 54: 662-671.

ALTOMARE CG et al. 1999. Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology 65: 2926-2933.

AMORIM AC et al. 2005. Compostagem e vermicompostagem de dejetos de caprinos: efeito das estações do ano. Engenharia Agrícola 25: 57-66.

ARAÚJO NETO SE de. et al. 2009. Produção de muda orgânica de pimentão com diferentes substratos. Ciência Rural 39: 1408-1413.

BASSACO AC. 2014. Uso de resíduos de origem animal biotransformados na produção de mudas de alface. Dissertação. (Mestrado em Agrobiologia). Santa Maria: UFSM. 49p.

BROTMAN Y et al. 2010. Trichoderma. Current Biology 20: 390-391.

BUCIO JL et al. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae 196: 109-123.

BUSATO JG et al. 2012. Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria. Bioresource Technology 110: 390-395.

COLLA G et al. 2015. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture 95: 1706-1715.

CQFS-RS/SC. 2004. Comissão de Química e Fertilidade do Solo. Manual de adubação e calagem para os Estados do Rio Grande do Sul e Santa Catarina. 10.ed. Porto Alegre: Sociedade Brasileira de Ciência do Solo. 400p.

COTTA JAO et al. 2015. Compostagem versus vermicompostagem: comparação das técnicas utilizando resíduos vegetais, esterco bovino e serragem. Engenharia Sanitária e Ambiental 20: 65-78.

DINIZ KA et al. 2006. Húmus como substrato para a produção de mudas de tomate, pimentão e alface. Bioscience Journal 22: 63-70.

DOMINGUEZ J. 2004. State of the art and new perspectives on vermicomposting Research. In: EDWARDS CA. (Ed.). Earthworm ecology. 2nd ed. Boca Raton: CRC Press. p. 401-424.

DURIGON MR et al. 2014. Adubações orgânicas e mineral e controle biológico sobre a incidência de podridões de colmo e produtividade de milho. Semina: Ciências Agrárias 35: 1249-1256.

FERMINO MH. 2003. Métodos de análises para caracterização física de substratos para plantas. Tese. (Doutorado em Fitotecnia). Porto Alegre: UFRGS. 104p.

FERREIRA DF. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35: 1039-1042.

GARD P et al. 2006. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresource Technology 97: 391-395.

GONZALEZ JAZ et al. 2009. Acúmulo de ácido oxálico e cristais de cálcio em ectomicorrizas de eucalipto: II – formação de cristais de oxalato de cálcio induzida por fungos ectomicorrízicos em raízes laterais finas. Revista Brasileira de Ciência do Solo 33: 555-562.

HARMAN GE. 2000. Myth and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T- 22. Plant Disease 84: 377-393.

HOFFMANN G. 1970. Verbindliche Metroden zur Untersuchung von TKS und Garterischen Erden. Mittelungen der VSLUFA 6: 129-153.

INBAR MJ et al. 1994. Plant growth enhancement and disease control bay Trichoderma harzianum in vegetable seedlings grown under commercial conditions. European Journal of Plant Pathology 100: 337-346.

JONES RW et al. 1988. Plant growth response to the phytotoxin viridiol produced by the fungus Gliocladium virens. Weed Science 36: 683-687.

KUBICEK CP et al. 2008. Fungal genus Hypocrea/Trichoderma from barcodes to biodiversity. Journal of Zhejiang University. Science. B. 9: 753-763.

LAZCANO C et al. 2008. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72: 1013-1019.

LORES M et al. 2006. Using FAME profiles for the characterization of animal wastes and vermicomposts. Soil Biology and Biochemistry 38: 2993-2996.

MAENZ DD & CLASSEN HL. 1998. Phytase activity in the small intestinal brush border membrane of the chicken. Poultry Science 87: 557-563.

MANSELL GP et al. 1981. Plant availability of phosphorous in dead herbage ingested by surface casting earthworms. Soil Biology & Biochemistry 13: 163-167.

MORALES DA et al. 2013. Utilização dos Diferentes Vermicompostos Produzidos a Partir de Resíduos da Estação de Tratamento de Efluentes como Substrato para Produção de Mudas de Alface. Ciência e Natura 35: 55-63.

PEIXOTO CP & PEIXOTO MFSP. 2009. Dinâmica do crescimento vegetal: princípios básicos. In: CARVALHO CAL et al. Tópicos em ciências agrárias. Cruz das Almas: Nova Civilização. p. 37-53.

PRATES HS et al. 2007. Composição mineral de mudas cítricas com aplicações de Trichoderma spp. São Paulo: IPNI. p. 4-5. (Informações Agronômicas nº 118).

SATCHELL JE & MARTIN K. 1984. Phosphate activity in earthworm faeces. Soil Biology and Biochemistry 16: 191-194.

SILVA AC & AGUIAR IJA. 2001. Micromorfologia da degradação de madeira da espécie amazônica Hura crepitans L. por fungos lignolíticos pertencentes a classe Hymenomycetes. Acta Amazonica 31: 397-418.

SOUZA EGF et al. 2013. Emergência e desenvolvimento de mudas de tomate IPA 6 em substratos, contendo esterco ovino. Revista Ceres 60: 902-907.

TAMAI MA et al. 2002. Avaliação de fungos entomopatogênicos para o controle de Tetranychus urticae Koch (Acari: Tetranychidae). Arquivo do Instituto Biológico 69: 77-84.

TEDESCO MJ et al. 1995. Análise de solo, plantas e outros materiais. 2.ed. Porto Alegre: UFRGS. 147p. (Boletim técnico, 5).

VINALE F et al. 2008. Trichoderma-plant-pathogen interactions. Soil Biology & Biochemistry 40:1-10.

WANG Y et al. 2005. Effect of cyadox on growth and nutrient digestibility in weanling pigs. South African Journal of Animal Science 35: 117-125.

WIETHAN MMS. 2015. Vermicompostagem e desenvolvimento inicial de alface em doses superiores de Trichoderma. Dissertação (Mestrado em Agrobiologia). Santa Maria: UFSM. 53p.

YOBO KS et al. 2011. Effects of single and combined inoculations of selected Trichoderma and Bacillus isolates on growth of dry bean and biological control of Rhizoctonia solani damping-off. African Journal of Biotechnology 10: 8746-8756.

Published

2018-03-16

How to Cite

MICHELON, Cleudson José; ROSA NETO, Lethícia; ORUOSKI, Pâmela; OLIVEIRA, Marília Boff de; VIEIRA, Caroline Castilhos; JUNGES, Emanuele. Vermicompost bioenriched whit Trichoderma spp. Revista de Ciências Agroveterinárias, Lages, v. 17, n. 1, p. 107–117, 2018. DOI: 10.5965/223811711712018107. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/9271. Acesso em: 21 nov. 2024.

Issue

Section

Research Article - Science of Soil and Environment

Most read articles by the same author(s)