Physiological and enzymatic responses in maize under different nitrogen concentrations

Authors

DOI:

https://doi.org/10.5965/223811712222023207

Keywords:

Zea mays, nutritive solution, nutritional state, enzyme activity

Abstract

The study of chemical and biochemical aspects associated with the development of different plant parts enables the assessment of a series of reactions leading to the production of biomass and grain culture. Thus, the objective of was to study the difference in nitrogen efficiency in roots and shoots of two corn genotypes in the initial stages of plants growth, and evaluate the biochemical and physiological responses of these organs, when plants are subjected to different doses of N, under hydroponic conditions. The experiment was conducted in a greenhouse in nutrient solution for 20 days, with two genotypes (AS1522 and AS1596) subjected to four N concentrations (zero, 112, 224 and 448 mg dm-3). Completely randomized desing with three replications das apply. The major differences among genotypes for biometric variables, dry matter, N accumulation and free amino acids were observed in the shoots. At root, the activity of nitrate reductase activity was the variable that stood out and provided the largest differences between genotypes. The genotype AS1596 is more efficient in N utilization.

Downloads

Download data is not yet available.

References

ARGENTA G et al. 2002. Parâmetros de planta como indicadores do nível de nitrogênio na cultura do milho. Pesquisa Agropecuária Brasileira 37: 519-527.

ASTHIR B et al. 2018. Supplementation of nitrogen and its influence on free sugars, amino acid and protein metabolism in roots and internodes of wheat. Cereal Research Communications 46: 658-667.

BATAGLIA OC et al. 1983. Métodos de análise química de plantas. Campinas: Instituto Agronômico. 41p. (Boletim Técnico 78).

BHATLA SC & LAL MA. 2018. Plant physiology, development and metabolism. Nova Deli: Springer. 1200p

BORTOLINI CG et al. 2002. Sistemas de aplicação de nitrogênio e seus efeitos sobre o acúmulo de N na planta de milho. Revista Brasileira de Ciência do Solo 26: 361-366.

BREDA FAF et al. 2019. Modulation of nitrogen metabolism of maize plants inoculated with Azospirillum brasilense and Herbaspirillum seropedicae. Archives of microbiology 201: 547-558.

BREDEMEIER C & MUNDSTOCK CM. 2000 Regulação da absorção e assimilação do nitrogênio nas plantas. Ciência Rural 30: 365-372.

CÂNDIDO ACTF et al. 2020. Nitrogen rates and residual effect of co-inoculation of soybean on maize plants. Revista Caatinga 33: 633-643.

CARPICI EB et al. 2010. Corn productivity and quality forage influenced by plant density and dose of nitrogen. J Field Harvests 15: 128-132.

CARVALHO RP et al. 2012. Eficiência de cultivares de milho na absorção e uso de nitrogênio em ambientes de cada de vegetação. Semina. Ciências Agrárias 33: 2125-2136.

EFTHIMIADOU A et al. 2020. Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Scientific reports 10: 1-11.

EPSTEIN E & BLOOM A. 2006. Nutrição mineral de plantas: princípios e perspectivas. Londrina: Editora Planta. 401p.

FAGERIA NK. 1998. Otimização da eficiência nutricional na produção das culturas. Revista Brasileira de Engenharia Agrícola e Ambiental 2: 6-16.

FERREIRA DF. 2019. SISVAR: A computer analysis system to fixed effects split plot type designs: Sisvar. Brazilian Journal of Biometrics 37: 529-535.

GALINDO FS et al. 2021. Nitrogen use efficiency and recovery in a wheat-corn rotation under tropical savannah conditions. Nutrient Cycling in Agroecosystems 119: 291-305.

GONDIM ARO et al. 2010. Eficiência nutricional do milho cv. BRS 1030 submetido à omissão de macronutrientes em solução nutritiva. Revista Ceres 57: 539-544.

JAWORSKI EG. 1971. Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications 43: 1274- 1279.

JENA N. et al. 2015. Effect of nitrogen and phosphate fertilizers on the growth and yield of quality protein maize (QPM). Intern. J Sci. Res. 4: 1839-1840.

KALISZ A et al. 2019. Survey of 17 elements, including rare earth elements, in chilled and non-chilled cauliflower cultivars. Scientific reports 9: 1-14.

LAMBERS H & OLIVEIRA RS. 2019. Growth and allocation. In: Plant physiological ecology. Perth: Springer. p.385-449.

MĂLINAŞ A et al. 2022. Current Status and Future Prospective for Nitrogen Use Efficiency in Wheat (Triticum aestivum L.). Plants 11: 217.

MOORE S. 1968. Amino acids analysis: Aqueous dimethilsulfoxide as solvent for the ninhidrin reaction. Journal Biology Chemistry 243: 6281-6283.

MUHAMMAD I et al. 2022. Nitrogen fertilizer modulates plant growth, chlorophyll pigments and enzymatic activities under different irrigation regimes. Agronomy 12: 845

NAEEM M et al. 2017. Improving drought tolerance in maize by foliar application of boron: water status, antioxidative defense and photosynthetic capacity. Archives of agronomy and soil science 64: 626-639.

OLIVEIRA MA et al. 2022. Trinexapac-ethyl application time in the crop corn agronomic performance grown under different plant arrangements. Semina: Ciênc. Agrár. 43: 809-826.

PETEAN CC et al. 2019. Polímeros orgânicos com ureia dissolvida e doses de nitrogênio no milho. Revista de Ciências Agrárias 62: 1-9.

PHELAN PL et al. 1996. Soil-Management history and host preference by Ostrinia nubilalis: Evidence for plant mineral balance mediating insect-plant interactions. Environmental Entomology 25: 1329-1336.

SCHIMITZ TH et al. 2010. Avaliação de cultivares de milho do ensaio centro precoce normal em Dois Vizinhos-PR, safra 2009-2010. Seminário: Sistemas de Produção Agropecuária 3: 1-6.

SILVA ES et al. 2021. Response of corn seedlings (Zea mays L.) to different concentrations of nitrogen in absence and presence of silicon. Silicon 13: 813-818.

SILVA MMD. 2021. Mudanças no perfil metabólico de Guzmania monostachia (Bromeliaceae) resultantes do estresse hídrico e cultivo em nitrato como fonte única de nitrogênio. Dissertação (Mestrado em botânica). São Paulo: USP. 51p.

TAIZ L et al. 2017. Fisiologia e desenvolvimento vegetal. Porto Alegre: Artmed.

TOCA A et al. 2022. Environmental conditions in the nursery regulate root system development and architecture of forest tree seedlings: a systematic review. New Forests 53: 1113–1143.

ULLAH H et al. 2019. Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Advances in agronomy 156: 109-157.

ZEFFA DM et al. 2019. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. Plos one 14: e0215332.

Published

2023-05-31

How to Cite

NETO, Edson Dias de Oliveira; RODRIGUES, Helen Cristina de Arruda; CAZETTA, Jairo Osvaldo; SOUZA, Henrique Antunes de. Physiological and enzymatic responses in maize under different nitrogen concentrations. Revista de Ciências Agroveterinárias, Lages, v. 22, n. 2, p. 207–217, 2023. DOI: 10.5965/223811712222023207. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/23076. Acesso em: 23 nov. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)