Splitting and nitrogen sources in the physiological quality of wheat seed

Authors

DOI:

https://doi.org/10.5965/223811711642017345

Keywords:

fertilizing, germination, Triticum aestivum L., Triticum

Abstract

Different sources and nitrogen management (N) may increase the availability, absorption, and assimilation of this nutrient by plants, favoring the N accumulation in grains. However, little is known about the influence of these factors on the physiological quality of wheat seeds (Triticum aestivum L.). In this context, the aim of this study was to evaluate the response of different sources and nitrogen fertilization, applied in cover, on the physiological quality of the wheat seeds. The experiment was conducted in a completely randomized block design in a split-design treatment plot with three cultivars of wheat (TBIO Mestre, TBIO Iguaçu and Quartzo), three sources of nitrogen (urea, ammonium nitrate, and liquid urea), applied using five methods: (I: tilling; II: tilling and booting; III: tilling and flowering; IV: booting and flowering and V: tilling, booting and flowering). The nitrogen partitioning between booting and flowering stages results in higher physiological seed quality, since it increases the percentage of germination by 4% and positively influences the germination count, shoot length, and seedling dry mass. The sources of nitrogen ammonia nitrate and the urea liquid source are equated with urea in relation to the effect on the physiological quality of the seeds, being interesting alternatives to reduce the production cost. The TBIO Mestre and Quartzo cultivars showed seeds with higher physiological quality, due to the greater length of radicle and percentage of germination.

Downloads

Download data is not yet available.

References

ABRANTES FL et al. 2010. Nitrogênio em cobertura e qualidade fisiológica e sanitária de sementes de painço (Panicum miliaceum L.). Revista Brasileira de Sementes 32: 106–115.

ALVARES CA et al. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711-728.

BLOOM AJ et al. 2012. Deposition of ammonium and nitrate in the roots of maize seedlings supplied with different nitrogen salts. Journal of Experimental Botany 63: 1997-2006.

BRASIL. 2009. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília: Mapa/ACS. 399p.

BRZEZINSKI CR et al. 2014. Nitrogênio e inoculação com Azospirillum na qualidade fisiológica e sanitária de sementes de trigo. Revista de Ciências Agrárias 57: 257- 265.

CARVALHO NM & NAKAGAWA J. 1988. Sementes: ciência, tecnologia e produção. 3.ed. Campinas: Fundação Cargill. 424p.

CHEN A et al. 2014. Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China. Nutrient Cycling in Agroecosystems 101: 139-152.

CRAMER MD & LEWIS OAM. 1993. The influence of nitrate and ammonium nutrition on the growth of wheat (Triticum aestivum) and maize (Zea mays) plants. Annals of Botany 72: 359-365.

CRUZ CD. 2013. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy 35: 271-276.

CRUZ RP & MILACH SCK. 2004. Cold tolerance at the germination stage of rice: methods of evaluation and characterization of genotypes. Scientia Agricola 61: 1-8.

DODD GL & DONOVAN LA. 1999. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. American Journal of Botany 86: 1146– 1153.

EMBRAPA. 2006. Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de classificação de solos. 2. ed. Rio de Janeiro: Embrapa Solos. 306p.

FANAN S et al. 2006. Avaliação do vigor de sementes de trigo pelos testes de envelhecimento acelerado e de frio. Revista Brasileira de Sementes 28: 152-158.

GLASS ADM et al. 2002. The regulation of nitrate and ammonium transport systems in plants. Journal of Experimental Botany 53: 855-864.

GONDIM TCO et al. 2006. Avaliação da qualidade fisiológica de sementes de milho-crioulo sob estresse causado por baixo nível de nitrogênio. Revista Ceres 53: 413-417.

GUL H et al. 2012. Determination of seed quality tests of wheat varieties under the response of different sowing dates and nitrogen fertilization. Pakistan Journal of Nutrition 11: 34-37.

HAYASHI K et al. 2008. Ammonia volatilization from a paddy field following applications of urea: rice plants are both an absorber and an emitter for atmospheric ammonia. Science of The Total Environment 390: 485-494.

JACKSON LE & BLOOM AJ. 1990. Root distribution in relation to soil nitrogen availability in field-grown tomatoes. Plant and Soil 128:115–126.

KOLCHINSKI EM & SCHUCH LOB. 2004. Relações entre a adubação nitrogenada e a qualidade de grãos e de sementes em aveia branca. Ciência Rural 34: 379-383.

LIN CC & KAO CH. 1995. NaCl stress in rice seedlings: Starch mobilization and the influence of gibberellic acid on seedling growth. Botanical Bulletin of Academia Sinica 36: 169-173.

PRANDO AM et al. 2012. Formas de ureia e doses de nitrogênio em cobertura na qualidade fisiológica de sementes de trigo. Revista Brasileira de Sementes 34: 272- 279.

RAMAGOPAL S. 1990. Inhibition of seed germination by salt and its subsequent effect on embryonic protein synthesis in barley. Journal of Plant Physiology 136: 621- 625.

SILVEIRA G et al. 2010. Efeito da densidade de semeadura e potencial de afilhamento sobre a adaptabilidade e estabilidade em trigo. Bragantia 69: 63-70.

STITT M et al. 2002. Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany 53: 959-970.

SUPRAYOGI Y et al. 2011. Nitrogen remobilization and post-anthesis nitrogen uptake in relation to elevated grain protein concentration in durum wheat. Canadian Journal of Plant Science 91: 273-282.

TRIBOÏ E et al. 2003. Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. Journal of Experimental Botany 54: 1731-1742.

WARRAICH EA et al. 2002. Effect of nitrogen on grain quality and vigour in wheat (Triticum aestivum L.). International Journal of Agriculture & Biology 4: 517-520.

XU H et al. 2015. Effect of nitrogen management during the panicle stage in rice on the nitrogen utilization of rice and succeeding wheat crops. European journal of agronomy 70: 41-47.

YADVINDER-SINGH et al. 2015. Nitrogen management for zero till wheat with surface retention of rice residues in north-west India. Field Crops Research 184:183–191.

YANO GT et al. 2005. Avaliação de fontes de nitrogênio e épocas de aplicação em cobertura para o cultivo do trigo. Semina: Ciências Agrárias 26: 141-148.

YIN XM et al. 2014. Effect of nitrogen starvation on the responses of two rice cultivars to nitrate uptake and utilization. Pedosphere 24: 690-698.

ZADOKS JC et al. 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415-421.

Published

2018-01-24

How to Cite

OLIVOTO, Tiago; NARDINO, Maicon; CARVALHO, Ivan Ricardo; FERRARI, Mauricio; PELEGRIN, Alan Junior de; SZARESKI, Vinícius Jardel; SOUZA, Velci Queiróz de. Splitting and nitrogen sources in the physiological quality of wheat seed. Revista de Ciências Agroveterinárias, Lages, v. 16, n. 4, p. 345–356, 2018. DOI: 10.5965/223811711642017345. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/7231. Acesso em: 21 nov. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)