Use of natural rumen modulators to replace monensin plus virginiamycin in high-grain diets for cattle

Authors

DOI:

https://doi.org/10.5965/223811712342024634

Keywords:

ruminants, additives, modulators

Abstract

This study aimed to evaluate food additives for the replacement of monensin and virginiamycin in high-grain diets for cattle. A Latin square experimental design was adopted, represented by four treatments (functional oil, yeast, tannin and control monensin and virginiamycin) in four experimental periods, with four animals cannulated in the rumen. l The natural ruminal modulators fully replaced the ionophores monensin and virginiamycin in the concentrate. Being evaluated: ruminal pH, apparent digestibility and in situ degradability of dry matter. The results showed that the pH variation curve as a function of rumen fluid collection time was not significant (P<0.05) among the additives studied. The additives used to replace monensin and virginiamycin in crossbred cattle fed a diet of 70% concentrate and 30% roughage with fractionation five times a day, are efficient in maintaining rumen pH above 6.0. The additives did not affect digestibility of OM, CP, NDF, FDA and EE. The in situ degradability of the soluble and potentially degradable fractions was higher in the yeast and essential oil treatments, respectively. The additives evaluated are efficient in replacing monensin and virginiamycin.

Downloads

Download data is not yet available.

References

ABDELLI N et al. 2021. Phytogenic feed additives in poultry: Achievements, prospective and challenges. Animals 11: 3471.

AOAC. 1995. Official Methods of Analysis. 16th Ed. Washington: Association of Official Analytical Chemists.

BENCHAAR C et al. 2007. Effects of Addition of Essential Oils and Monensin Premix on Digestion, Ruminal Fermentation, Milk Production, and Milk Composition in Dairy Cows. Journal of Dairy Science 89: 4352–4364.

BENCHAAR, C. et al. 2008. A review of plant-derived essential oils in ruminant nutrition and production. Animal feed science and technology, 145: 209-228.

BODAS R et al. 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology 176: 78-93.

CAPPELLE ER et al. 2001. Estimativas do valor energético a partir de características químicas e bromatológicas dos alimentos. Revista Brasileira de Zootecnia 30: 1837-1856.

CARBERRY CA et al. 2019. Overfeeding and underfeeding have detrimental effects on the reproductive performance, mammary gland development, and milk composition of spring-calving Holstein dairy cows. Journal of Dairy Science 102: 909-922.

CARDOZO PW et al. 2005. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a highconcentrate diet for beef cattle. Journal Animal Science 83: 2572–2579.

CARVALHO S et al. 2007. Desempenho e avaliação econômica da alimentação de cordeiros confinados com dietas contendo diferentes relações volumoso:concentrado. Ciência Rural 37: 1411-1417.

CAVALCANTE LAD et al. 2014. Respostas de genótipos de palma forrageira a diferentes densidades de cultivo. Pesquisa Agropecuária Tropical 44: 424-433.

COBELLIS G et al. 2016. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Science of the Total Environment 545: 556-568.

DORANTES-ITURBIDE G et al. 2022. Essential Oils as a Dietary Additive for Small Ruminants: A Meta-Analysis on Performance, Rumen Parameters, Serum Metabolites, and Product Quality. Veterinary Sciences 9: 475.

DUVAL S et al. 2017. The role of livestock-associated methanogens in the methane production in a model biogas plant. Systematic and Applied Microbiology 40: 182-191.

ECKERT E et al. 2015. Weaning age affects growth, feed intake, gastrointestinal development, and behavior in Holstein calves fed an elevated plane of nutrition during the preweaning stage. Journal of dairy science 98: 6315-6326.

FERREIRA DF. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35: 1039-1042.

FIRKINS JL et al. 2001. Effects of grain variability and processing on starch utilization by lactating dairy cattle. Journal of Animal Science 79: 200.

FRANÇA R & RIGO EJ. 2011. Utilização de leveduras vivas (Saccharomyces cerevisiae) na nutrição de ruminantes – Uma revisão. FAZU 8: 187-195.

HARRIS ME. 2014. Feeding condensed distillers solubles to feedlot finishing steers and the effects of feed additives in adaptation diets. Thesis (Master of Animal Science). Lincoln: University of Nebraska. 67p.

HRISTOV AN et al. 2019. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. Journal of dairy science 102: 5811-5852.

JAHANI-AZIZABADI H. 2014. Efeito de alguns óleos essenciais de plantas na produção in vitro de metano ruminal e nas características de fermentação de uma dieta com forragem média. Jornal de Ciência e Tecnologia Agrícola 16: 1543-1554.

KHAN S et al. 2020. Essential oils: A natural way towards health and performance of livestock. Journal of Entomology and Zoology Studies 8: 915-919.

KNAPP JR et al. 2014. Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science 97: 3231-3261.

KÖPPEN W & GEIGER R. 1928. Klimate der Erde. Verlag Justus Perthes, Gotha, Wall-Map 150 cm x 200 cm.

LICITRA G et al. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal feed science and technology 57: 347-358.

LILLEHOJ H et al. 2018. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veterinary research 49: 1-18.

MACIEL ICF et al. 2019. Suplementação com irginicina e monensina sódica para bovinos de corte a pasto. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 71: 1999-2008.

MARTINS MF. 2017. Inclusão de óleo funcional e monensina na dieta de vacas primíparas e lactantes da raça Holandês no verão. Tese (Doutorado em Ciências – Qualidade e Produtividade Animal). Pirassununga: Faculdade de Zootecnia e Engenharia de Alimentos da Universidade de São Paulo.

MEALE SJ et al. 2014. Incluindo óleos essenciais nas dietas de vacas leiteiras em lactação: efeitos nas emissões de metano1. Ciência da Produção Animal 54: 1215-1218.

MERTENS DR et al. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC international 85: 1217-1240.

NEUMANN M et al. 2022. Efeito associativo de óleos essenciais, taninos e monensina sódica sobre o desempenho de novilhos terminados em confinamento. Semina: Ciências Agrárias 43: 2059–2078.

NOCEK JE. 1988. In situ and other methods to estimate ruminal protein and energy digestibility: a review. Journal Dairy Science 71: 2051-2069.

OLIVEIRA VS et al. 2013. Características químicas e fisiológicas da fermentação ruminal de bovinos em pastejo – revisão de literatura. Revista cientifica eletrônica de medicina veterinária 19: 1-21.

OLIVEIRA ER et al. 2020. Degradabilidade e digestibilidade de dietas para cordeiros confinados suplementados com níveis crescentes de óleo de copaíba (Copaifera sp.). Brazilian Journal of Animal and Environmental Research 3: 2152-2164.

QUEIROZ RC et al. 2004. Uso de Produto à Base de Enzima e Levedura na Dieta de Bovinos: Digestibilidade dos Nutrientes e Desempenho em Confinamento. R. Bras. Zootec. 33: 1548-1556.

RAPOSO F et al. 2020. Predictive regression models for biochemical methane potential tests of biomass samples: Pitfalls and challenges of laboratory measurements. Renewable and Sustainable Energy Reviews 127: 109890.

ROBERTSON JB & VAN SOEST PJ. 1981. The Detergent System of Analysis. In: JAMES WPT & THEANDER O. (Eds.) The Analysis of Dietary Fibre in Food. Chapter 9. New York: Marcel Dekker. p.123-158.

RODRÍGUEZ-PRADO M et al. 2012. Effects of dietary addition of capsicum extract on intake, water consumption, and rumen fermentation of fattening heifers fed a high-concentrate diet. Journal Animal Science 90: 1879–1884.

SANTOS RLC. 2016. Avaliação da monensina, da virginiamicina e do óleo funcional na suplementação da dieta de bovinos. Dissertação (Mestrado em Ciências Animais) Brasília: Universidade de Brasília. 56 p.

SARTORI ED et al. 2017. The effect of live yeast supplementation on beef cattle performance: a systematic review and meta-analysis. Journal of Agricultural Science 9: 21-37.

SILVA DJ & QUEIROZ AC. 2002. Análise de alimentos (métodos químicos e biológicos). 3.ed. Viçosa: Universidade Federal de Viçosa.

UNGERFELD EM. 2015. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Frontiers in Microbiology 6: 37.

VAN SOEST PJ. 1994. Nutritional ecology of the ruminant. 2.ed. Ithaca: Cornell Univ. Press. 476 p.

VÉRAS ASC et al. 2000. Consumo e digestibilidade aparente em bovinos Nelore, não-castrados, alimentados com rações contendo diferentes níveis de concentrado. Revista Brasileira de Zootecnia 29: 2367-2378.

Downloads

Published

2024-12-18

How to Cite

ARAÚJO, Saulo Alberto do Carmo; DEMINICIS, Bruno Borges; ROCHA, Norberto da Silva; LOURENÇO, Felippe Meira; CARVALHO, Fernanda de Oliveiro. Use of natural rumen modulators to replace monensin plus virginiamycin in high-grain diets for cattle. Revista de Ciências Agroveterinárias, Lages, v. 23, n. 4, p. 634–641, 2024. DOI: 10.5965/223811712342024634. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/25471. Acesso em: 21 dec. 2024.

Issue

Section

Research Article - Science of Animals and Derived Products

Most read articles by the same author(s)