Physiological and growth analysis and productivity of cassava under irrigation levels

Authors

DOI:

https://doi.org/10.5965/223811712112022016

Keywords:

Manihot esculenta Crantz, root length, leaf area index, photosynthetic rate, agricultural productivity, harvest index

Abstract

The objective of this research was to evaluate the growth, productivity and the physiological responses of cassava under irrigation levels in the Alagoas Forest Zone. The statistical design used was randomized blocks, in a split-plot scheme, with four replications. The treatments were six levels of irrigation, depending on the evapotranspiration of the crop – ETC (L0 = 0% (Rainfed), L1 = 40%, L2 = 80%, L3 = 120%, L4 = 160% and L5 = 200% of the ETC). The variables were divided into groups: growth and production (evaluated in six bimonthly periods - 1 year) and the physiological (net photosynthetic rate and transpiratory, leaf temperature, stomatal conductance, instantaneous water use efficiency, potential quantum yield, effective quantum efficiency of photosystem II and SPAD index were evaluated in five bimonthly periods – 10 months). The water balance of the irrigation levels was carried out, on a decendial scale. The annual evapotranspiration of cassava added around 1,030 mm, and in dryland areas, the effective rainfall is only 522 mm, which generates a water deficit of 508 mm, and this makes the importance evident of use of irrigation in crops in the region. In general, cassava growth, yield and the physiological responses are superior in irrigated areas when compared with the rainfed crops, and irrigation provides the root and total biomass yields of 97 and 155 Mg ha-1, under the irrigation levels of 129 and 136% of the ETC, respectively, in the studied region.

Downloads

Download data is not yet available.

References

ANDE OT et al. 2008. Effects of land quality, management and cropping systems on cassava production in southern western Nigeria. African Journal of Biotechnology 7: 2368- 2374.

ALLEN RG et al. 1998. Crop evapotranspiration: guidelines for computing crop requirements. Roma: FAO. 328p. (Irrigation and drainage paper 56).

ALVES AAC. 2002. Cassava botany and physiology. In: HILLOCKS RJ et al. (Eds.) Cassava: Biology, Production and Utilization. Wallingford: Cabi. p.67-89.

AMMA SS et al. 2019. Water Productivity of Micro-Irrigated Cassava (Manihot Esculenta Crantz). In: GOYAL MR et al. (Ed.) Management Strategies for Water Use Efficiency and Micro Irrigated Crops. Apple Academic Press. p.63-70.

BARROS AHC et al. 2012. Climatologia do estado de Alagoas. Recife: Embrapa Solos. 32p. (Boletim de Pesquisa e Desenvolvimento 211).

CIAT. 1989. Centro Internacional de Agricultura Tropical. Cassava Program Annual Report for 1987-1989. Cali.

CONCEIÇÃO AJ. 1979. A mandioca. Cruz das Almas: UFBA/EMBRAPA/BNB/BRASCAN NORDESTE. 382p.

EL-SHARKAWY MA. 2007. Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. Brazilian Journal of Plant Physiology 19: 257-286.

FAO. 2021. Organização das Nações Unidas para Alimentação e Agricultura. Disponível em: http://www.fao.org/faostat/en/#data/QC. Acesso em: 20 jun. 2021.

OLIVEIRA PRB et al. 2020. Desempenho agronômico de cultivares de mandioca de mesa em ambiente do cerrado. Colloquium Agrariae 3: 37-47.

PEREIRA AR et al. 2002. Agrometeorologia (Fundamentos e aplicações práticas). Guaíba: Livraria e Editora Agropecuária. 478p.

PIPATSITEE A et al. 2018. Application of infrared thermography to assess cassava physiology under water deficit condition. Plant Production Science 21: 398-406.

RID. 2010. Royal Irrigation Department. Crop coefficient. Disponível em: http://water.rid.go.th/hwm/ cropwater/CWRdata/Kc/kc_th.pdf. Acesso em: 04 abr. 2021.

SILVA VPR et al. 2011. Análise da pluviometria e dias chuvosos na região Nordeste do Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental 15: 131-138.

SILVA RB. 2021. Crescimento e produtividade da mandioca sob níveis de irrigação. Tese (Doutorado em Agronomia). Rio Largo: UFAL. 87p.

SOUZA JL et al. 2005. Global solar radiation measurements in Maceió, Brasil. Renewable Energy 30: 1203-1220.

SOUZA LS et al. 2009. Recomendação de calagem e adubação para o cultivo da mandioca. Cruz das Almas: EMBRAPA. 6p. (Boletim Técnico 133).

TIRONI LF et al. 2015. Desempenho de cultivares de mandioca em ambiente subtropical. Bragantia 74: 58-66.

TROCCOLI A et al. 2014. Weather Matters for Energy. New York: Springer.

VERÍSSIMO V et al. 2010. Pigmentos e eficiência fotossintética de quatro variedades de mandioca. Revista Raízes e Amidos Tropicais 6: 222-231.

WASONGA DO et al. 2020. Growth response of cassava to deficit irrigation and potassium fertigation during the early growth phase. Agronomy 10: 321.

ZHU Y et al. 2020. Physiological and biochemical responses of four cassava cultivars to drought stress. Scientific reports 10: 1-12.

Published

2022-03-04

How to Cite

SILVA, Ricardo Barros et al. Physiological and growth analysis and productivity of cassava under irrigation levels . Revista de Ciências Agroveterinárias, Lages, v. 21, n. 1, p. 16–26, 2022. DOI: 10.5965/223811712112022016. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/20887. Acesso em: 2 nov. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)