Relationship between some geostatistical-based measures for agricultural attributes

Authors

DOI:

https://doi.org/10.5965/223811712342024782

Keywords:

within-field variability, spatial autocorrelation, field factors, precision agriculture

Abstract

The aim of the article was to evaluate the behavior and relationship of some spatial variability measures used in the agricultural context. The Degree of Spatial Dependence (SPD), the Spatial Dependence Index (SDI) and the Spatial Dependence Measure (SDM) were evaluated. The Spearman correlation was obtained between Sample size per hectare (n.ha-1), Coefficient of Variation [CV (%)], SDI (%), SDM (%), Range (m) and SPD (%), in each semivariogram model. The behaviors of SDI, SDM and SPD were compared, depending on the different semivariogram models. Exponential semivariogram generated higher spatial variability. The SDI and SDM measurements correlated with the CV only in the spherical semivariogram. The SPD correlated with the CV in the exponential and spherical semivariograms. SPD tends to generate fewer weak classifications of spatial variability, so it is suggested to consider moderate spatial variability from SPD values ​​of at least 45%.

Downloads

Download data is not yet available.

References

AMARAL LR & DELLA JUSTINA DD. 2019. Spatial dependence degree and sampling neighborhood influence on interpolation process for fertilizer prescription maps. Engenharia Agrícola 39: 85-95.

APPEL NETO E et al. 2018. Spatial dependence index for cubic, pentaspherical and wave semivariogram models. Boletim de Ciências Geodésicas 24: 142-151.

APPEL NETO E et al. 2020. Geostatistical-based index for spatial variability in soil properties. Revista Brasileira de Ciência do Solo 44: e0200086.

BIONDI F et al. 1994. Geostatistically modeling stem size and incremente in an old-growth forest. Canadian Journal of Forest Research 24: 1354-1368.

BRITO WBM et al. 2021. Pedotransfer functions to estimate some soil properties in Indian Black Earth, south of Amazonas State. Anais da Academia Brasileira de Ciências 93: e20190543.

CAMBARDELLA CA et al. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal 58: 1501-1511.

COSTA BRS et al. 2019. Temporal variation and spatial distribution of relative indices of leaf chlorophyll in grapevine cv. chardonnat. Engenharia Agrícola 39: 74–84.

CURSI DE et al. 2021. Novel tools for adjusting spatial variability in the early sugarcane breeding stage. Frontiers in Plant Science 12: 749533.

DALCHIAVON FC & CARVALHO MP. 2012. Correlação linear e espacial dos componentes de produção e produtividade da soja. Semina: Ciências Agrárias 33: 541- 552.

FIGUEIREDO VC et al. 2018. Development of a methodology to determine the best grid sampling in precision coffee growing. Coffee Science 13: 312–323.

FU W et al. 2011. Using Moran’s I and geostatistics to identify spatial patterns of soil nutrients in two different long-term phosphorus-application plots. Journal of Plant Nutrition and Soil Science 174: 785-798.

GUEDES LPC et al. 2020. Nugget effect influence on spatial variability of agricultural data. Engenharia Agrícola 40: 96-104.

LEROUX C & TISSEYRE B. 2019. How to measure and report within-field variability: a review of common indicators and their sensitivity. Precision Agriculture 20: 562-590.

MENDONÇA PG et al. 2018. Temporal and spatial uncertainty of erosion soil loss from an argisol under sugarcane management scenarios. Revista Brasileira de Ciência do Solo 42: e0170182.

OLIVEIRA IA et al. 2014. Spacial variability and sampling density of chemical attributes in archaeological black Earth and native forest soil in Manicoré, AM. Floresta 44: 735-746.

PIAS OHC et al. 2019. Transition from systematic to directed soil sampling designs in an area managed with precision agriculture. Engenharia Agrícola 39: 400–409.

PINTO LOR et al. 2019. Avaliação de índices de dependência espacial de modelos geoestatísticos sobre a krigagem. Enciclopédia Biosfera 16: 339-352.

R CORE TEAM. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

RODRIGUES MS et al. 2019. Soil mapping quality for site-specific management in fruit fields in the semiarid region of Brazil. Ciencia del suelo 37: 328-337.

RODRIGUES MS et al. 2020a. Geostatistics and its potential in Agriculture 4.0. Revista Ciência Agronômica 51: e20207691.

RODRIGUES AF et al. 2020b. Soil water content and net precipitation spatial variability in an Atlantic forest remnant. Acta Scientiarum: Agronomy 42: e43518.

SANTOS ELE et al. 2018. Some aspects about the spatial dependence index for variability of soil attributes. Ciencia Rural 48: e20170710.

SEIDEL EJ & OLIVEIRA MS. 2014. Novo índice geoestatístico para a mensuração da dependência espacial. Revista Brasileira de Ciência do Solo 38: 699-705.

SEIDEL EJ & OLIVEIRA MS. 2015. Medidas de dependência espacial baseadas em duas perspectivas do semivariograma paramétrico. Ciência e Natura 37: 20-27.

SEIDEL EJ & OLIVEIRA MS. 2016. A classification for a geostatistical index of spatial dependence. Revista Brasileira de Ciência do Solo 40: e0160007.

SOARES CM et al. 2019. Diagnóstico de perdas na colheita mecanizada de duas cultivares de tomate industrial. Revista Brasileira de Ciências Agrárias 14: 1-10.

TAGLIARI-BALESTRIN J et al. 2021. Variabilidade espacial da palha de soja distribuída na colheita e sua relação com o estande final de aveia preta. Revista Tecnología en Marcha 34: 28-37.

ZHAO M et al. 2023. Within-field spatial variability and potential for profitability of variable rate applications. Precision Agriculture 24: 2248-2263.

Published

2024-12-18

How to Cite

PADILHA, Luciane Clates; PAZINI, Juliano de Bastos; SEIDEL, Enio Júnior. Relationship between some geostatistical-based measures for agricultural attributes. Revista de Ciências Agroveterinárias, Lages, v. 23, n. 4, p. 782–787, 2024. DOI: 10.5965/223811712342024782. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/25447. Acesso em: 21 dec. 2024.

Issue

Section

Research Note - Multisections and Related Areas