Gibberellic acid promotes dormancy-breaking of rice seeds and the formation of abnormal seedlings

Authors

DOI:

https://doi.org/10.5965/223811712042021278

Keywords:

GA3, Starch, Total soluble sugars, biochemistry

Abstract

O arroz é uma das espécies que apresenta dormência após a colheita, podendo esta ser prolongada durante o armazenamento das sementes. Este trabalho teve por objetivo determinar se o ácido giberélico (GA3) é um promotor eficiente da superação de dormência em sementes de arroz e avaliar mudanças nas estruturas biológicas via histoquímica. A cultivar utilizada foi a SCS122 Miura submetida a 0 mg L-1, 500 mg L-1 e 1000 mg L-1 de GA3. Foram realizadas análises de germinação, viabilidade, comprimento de raiz, parte aérea e plântula, microscopia óptica do amido e quantificação dos açúcares solúveis totais. A utilização de 500 mg L-1 e 1000 mg L-1 de GA3 foi eficiente para a superação da dormência de sementes de arroz, reduzindo o percentual de sementes dormentes para 4% e 1% respectivamente. Apesar de reduzir o percentual dormência, a presença de GA3 provoca aumento do percentual de plântulas anormais, e por isso, nas concentrações utilizadas, não pode ser recomendado como método de superação em sementes de arroz. A microscopia óptica é eficiente para verificar que com a superação de dormência, ocorre a degradação dos grânulos de amido, aumentando a disponibilidade de açúcares solúveis totais para o crescimento e desenvolvimento de plântulas.

Downloads

Download data is not yet available.

References

ALENCAR NLM et al. 2012. Seed reserve composition and mobilization during germination and early seedling establishment of Cereus jamacaru D.C. ssp. jamacaru (Cactaceae). Annals of the Brazilian Academy of Sciences 84:823-832.

ALI AS & ELOZEIRI AA. 2017. Metabolic Processes During Seed Germination. In: JIMENEZ-LOPEZ JC. Advances in Seed Biology. IntechOpen

ANDRADE GC et al. 2020. Modelling the vigour of maize seeds submitted to artificial accelerated ageing based on ATR-FTIR data and chemometric tools (PCA, HCA and PLS-DA). Heliyon 6 e03477.

ARAGÃO CA et al. 2003. Atividade amilolítica e qualidade fisiológica de sementes armazenadas de milho super doce tratadas com ácido giberélico. Journal of Seed Science 25:43-48.

BALDI ME et al. 2012. Métodos alternativos para superação da dormência em sementes de arroz irrigado. Informativo Abrates 22: 16-19.

BEWLEY JD et al. 2013. Seeds: Physiology of development, germination and dormancy. 3.ed. New York: Springer. 407 p.

BOUZON ZL. 1993. Aspectos histoquímicos e ultra-estruturas da porção vegetativa e reprodutiva de estiquídios de Hypnea musciformis (Gigartinales- Rhodophyta). Dissertação (Mestrado em Biologia Celular e Molecular). Curitiba: UFPR.

BRASIL. 2009. Regras para análise de sementes. Brasília: Mapa/ACS. 398 p.

CLEGG KM. 1956. The application of the anthrone reagent to the estimation of starch in cereals. Journal of the Science of Food and Agriculture 7: 40-44.

COELHO CMM et al. 2010. Características morfo-agronômicas de cultivares crioulas de feijão comum em dois anos de cultivo. Semina Ciências Agrárias 31:1177-1186.

COX TS et al. 2010. Progress in breeding perennial grains. Crop & Pasture Science 61:513-521.

GAO S & CHU C. 2020. Gibberellin Metabolism and Signaling: Targets for Improving Agronomic Performance of Crops. Plant and Cell Physiology 61:1902-1911.

GRAEBE J. 1987. Gibberellins biosynthesis and control. Annual Review of Plant Physiology 38:425-457.

GROHS M et al. 2012. Desempenho de cultivares de arroz com uso de reguladores de crescimento em diferentes sistemas de cultivo. Pesquisa Agropecuária Brasileira 47:776-783.

JOHANSEN DA. 1940. Plant microtechnique.1rt edn. New York, McGraw-Hill Book Co. Ltd.

KHAN MB et al. 2011. Wheat seed enhancement by vitamin and hormonal priming. Pakistan Journal of Botany 43: 1495-1499.

KUMARI N et at. 2017. Effect of halo priming and hormonal priming on seed germination and seedling vigour in maize (Zea mays L.) seeds. Journal of Pharmacognosy and Phytochemistry 6: 27-30.

LAVIS LD. 2011. Histochemistry: Live and in color. Journal of Histochemistry and Cytochemistry 59: 139-145.

LONG RL et al. 2015. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biological Reviews 90: 31-59.

MARCOS FILHO J. 2015. Fisiologia de sementes de plantas cultivadas. 2.ed. Londrina: Abrates.

MIRANSARI M & SMITH D. 2014. Plant hormones and seed germination. Environmental And Experimental Botany 99: 110-121.

NAKAGAWA J. 1999. Testes de vigor baseados no desempenho de plântulas. In: KRZYZANOWSKI FC et al. (Eds.). Vigor de sementes: conceitos e testes. Londrina: Abrates. p.1-24.

NÉE G et al. 2017. The release of dormancy, a wake-up call for seeds to germinate. Current Opinion in Plant Biology 35: 8-14.

R CORE TEAM. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing.

SCHMIDT EC. 2009. Efeitos da radiação ultravioleta-B sobre a morfofisiologia de Kappaphycus alvarezii (Doty) Doty ex P. Silva (Gigartinales) variantes pigmentares verdes e vermelhas. Dissertação (Mestrado em Biologia Vegetal). Florianópolis: UFSC. 140p.

SHU K et al. 2016. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant 9:34-45.

SUN J et al. 2018. Exogenous gibberellin weakens lipid breakdown by increasing soluble sugars levels in early germination of Zanthoxylum seeds. Plant Science 280: 155-163.

TAIZ L et al. 2017. Fisiologia e desenvolvimento vegetal. 6.ed. Porto Alegre: Artmed.

TONIN I. 2015. Aplicação de ácido giberélico e superação de dormência em sementes de trigo. Dissertação (Mestrado em Ciência e Tecnologia de sementes). Pelotas: UFPel. 44p.

TOZZI HH & TAKAKI M. 2011. Histochemical analysis of seed reserve mobilization in Passiflora edulis Sims fo. flavicarpa O. Deg. (yellow passion fruit) during germination. Brazilian Journal of Biology 71: 701-708.

UARROTA V et al. 2011. Histochemical Analysis and Protein Content of Maize Landraces (Zea mays L.). Journal of Agronomy 10:92-98.

VIEIRA AR et al. 2002. Action of gibberellic acid (GA3) on dormancy and activity of a-amylase in rice seeds. Journal of Seed Science 24:43-48.

VIEIRA AR et al. 2008. Marcador isoenzimático de dormência em sementes de arroz. Journal of Seed Science 30: 81-89.

VIEIRA EL et al. 2010. Manual de fisiologia vegetal. São Luís, EDUFMA.

YAO W & SHEN Y. 2018. Effects of gibberellic acid and magnetically treated water on physiological characteristics of Tilia miqueliana seeds. Canadian Journal of Forest Research 48: 554-558.

ZHAO M et al. 2018. Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species. Frontiers in Plant Science 234:1-11.

Downloads

Published

2021-12-20

How to Cite

GARCIA, Jaquelini; CASTOLDI, Camile Thais; ANDRADE, Gisiane Camargo de; COELHO, Cileide Maria Medeiros; GAVICHO UARROTA, Virgílio. Gibberellic acid promotes dormancy-breaking of rice seeds and the formation of abnormal seedlings . Revista de Ciências Agroveterinárias, Lages, v. 20, n. 4, p. 278–285, 2021. DOI: 10.5965/223811712042021278. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/19295. Acesso em: 24 nov. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)

<< < 1 2