Residual Effect of Atrazine and Atrazine + Simazine in Soybean

Authors

  • Felipe Tolloti Peruzzo Universidade Federal de Santa Maria
  • Diecson Ruy Orsolin da Silva Universidade federal de Santa Maria
  • Álvaro André Alba da Silva Universidade Federal de Santa Maria
  • Bruna Dal'Pizol Novello Universidade Federal de Santa Maria
  • Marina Luiza Cuchi Universidade Federal de Santa Maria

DOI:

https://doi.org/10.5965/223811711912020064

Keywords:

triazines, environmental conditions, phytotoxicity, Glycine max.

Abstract

The soil persistence of herbicides from the triazines group is basically dependent on precipitation conditions and soil characteristics. The objective of this study was to assess the residual effect of different application times and atrazine and atrazine + simazine doses for the soybean crop. Experiments were conducted in the field and greenhouse. In the field, the design of subdivided plots with four replications was used, with factor A composed of application times 56, 49, 42, 35, 28, 21, and 14 days before soybean sowing; and factor B, by the herbicides atrazine and atrazine + simazine. For the greenhouse experiment, the design was completely randomized blocks, factor A doses 0, 570, 1140, 1715, 2285, 2860, 3430, and 4000 g i.a. ha-1, factor B herbicides atrazine and atrazine + simazine. The application of the treatments was carried out with a CO2 pressurized sprayer, after the application of the soybean. The field was assessed regarding the plant stand, phytotoxicity, stature, height of insertion of the first training, chlorophyll content, and kg ha-1 yield. In the greenhouse, phytotoxicity, plant height, leaf area, and dry mass were assessed. Then, data were submitted to analysis of variance and, when significant, the means were compared by the Tukey test at 5%. The residual simulation of the herbicides atrazine and atrazine + simazine in the soil showed similar behavior regarding the effects on soybean. In the field experiment, due to the high precipitations that occurred in the interval between herbicide applications and soybean sowing, no phytotoxic effects or reduction in crop yield were observed. In the greenhouse, increasing the residual dose of herbicides in the soil increased the toxic effects on soybean.

References

BACHEGA TF et al. 2009. Lixiviação de sulfentrazone e amicarbazone em colunas de solo com adição de óleo mineral. Planta Daninha 27: 363-370.

BARANOWSKA I et al. 2008. ELISA and HPLC methods for atrazine and simazine determination in trophic chains samples. Ecotoxicology and Environmental Safety 70: 341-348.

BLANCO FMG et al. 2013. Herbicide-soil interactions applied to maize crop under Brazilian conditions. In: PRICE A. (Ed.). Herbicides – Current research and case studies in use. London: Intech. p.47-73.

CORREIA FV & LANGENBACH T. 2006. Dinâmica da distribuição e degradação de atrazina em argissolo vermelho-amarelo sob condições de clima tropical úmido. Revista Brasileira Ciência do Solo 30: 183-192.

DICK DP et al. 2010. Matéria orgânica em quatro tipos de solos brasileiros: composição química e sorção de atrazina. Química Nova 3: 14-19.

EMBRAPA. 2013. Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos. 3.ed. Brasília: Embrapa. 353p.

FURLAN RG et al. 2016. Simulação do efeito residual da atrazina em cenoura. Horticultura Brasileira 34: 584- 587.

GRIGOLLI JFJ et al. 2017. Controle de plantas de soja e supressão do capim em milho consorciado com Brachiaria ruziziensis. Arquivos do Instituto Biológico 84: 1-7.

INMET. 2018. Instituto Nacional de Meteorologia. Estações Automáticas/ Consulta Dados da Estação Automática: Frederico Westphalen (RS). Disponível em: http://www.inmet.gov.br. Acesso em: 11 mar. 2018.

INOUE MH et al. 2003. Critérios para avaliação do potencial de lixiviação dos herbicidas comercializados no estado do Paraná. Planta Daninha 21: 313-323.

KASOZI GN et al. 2012. Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin. Environmental Pollution 169: 12-19.

MANCUSO MAC et al. 2011. Efeito residual de herbicidas no solo (“Carryover”). Revista Brasileira de Herbicidas 10: 151-164.

MARTINAZZO R et al. 2011. Sorção de atrazina e mesotriona em latossolos e estimativa potencial de contaminação. Revista Química Nova 34: 1378-1384.

MUDHOO A & GARG VK. 2011. Sorption, transport and transformation of atrazine in soils, minerals and composts. Pedosphere 21: 11-25.

OLIVEIRA JR RS et al. 2011. Biologia e manejo de plantas daninhas. 1.ed. Curitiba: Omnipax. 348p.

PUBCHEM. 2018. Open Chemistry Database. Atrazine. Disponível em: https://pubchem.ncbi.nlm.nih.gov/compound/atrazine#section=Top. Acesso em: 23 abr. 2018.

SANTOS DP et al. 2013. Determination of bioindicators of auxinic herbicides residues. Revista Ceres 60: 354-362.

SBCPD. 1995. Sociedade Brasileira da Ciência das Plantas Daninhas. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina: SBCPD. 42p.

VIDAL RA & MEROTTO JR A. 2001. Herbicidologia. Porto Alegre: Evangraf. 152p.

VONBERG D et al. 2014. Atrazine soil core residue analysis from an agricultural field 21 years after its ban. Journal of Environmental Quality 43: 1450-1459.

YU J & MCCULLOUGH PE. 2016. Efficacy and Fate of Atrazine and Simazine in Doveweed (Murdannia nudiflora) Weed Science 64: 379-388.

Published

2020-04-03

Issue

Section

Research Article - Science of Plants and Derived Products