Effect of silica fertilization on unconventional vegetables

Authors

  • Luís Cláudio Pessoa Oliveira Universidade Federal de Lavras, Lavras, MG, Brasil.
  • Douglas Correa de Souza Universidade Federal de Lavras, Lavras, MG, Brasil.
  • Luis Felipe Lima e Silva Universidade José do Rosário Vellano, Alfenas, MG, Brasil.
  • Thiago Sampaio Guerra Universidade Federal de Lavras, Lavras, MG, Brasil.
  • Luciane Vilela Resende Universidade Federal de Lavras, Lavras, MG, Brasil.
  • Maria Ligia de Souza Silva Universidade Federal de Lavras, Lavras, MG, Brasil.

DOI:

https://doi.org/10.5965/223811711922020224

Keywords:

biofortification, food safety, nutraceutical food

Abstract

The objective of this work was to verify the capacity of unconventional vegetables to accumulate silicon, as well as their response to silicate fertilization. The experiment was conducted in a greenhouse in 2016. Two doses of silicate fertilization (0 and 50 mg dm-3 of Si) and nine species of unconventional vegetables (Maranta arundinacea L., Rumex acetosa L., Amaranthus spinosus L., Amaranthus viridis L., Amaranthus retroflexus L., Amaranthus deflexus L., Amaranthus hybridus L., Stachys byzantina K. Koch and Sonchus oleraceus L.) were evaluated, arranged in a completely randomized design in a 2 x 9 factorial scheme, with four replicates. The fresh and dry masses and the Si content were determined in all the plants. The unconventional vegetable species evaluated have the potential to accumulate silicon through element fertilization. The application of 50 mg dm-3 of Si provided higher Si content in the studied species. Fertilization with Si does not generally influence plant biomass.

Downloads

Download data is not yet available.

References

ÁLVARES CA et al. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711-728.

DANTAS JÚNIOR EE et al. 2013. Silicate fertilizer and irrigation depth in corn production. Revista Ceres 60: 563-568.

DAYANANDAN P et al. 1983. Detection of Silica in Plants. American Journal of Botany 70: 1079-1084.

D'IMPÉRIO M et al. 2015. Silicon biofortification of leafy vegetables and its bioaccessibility in the edible parts. Journal of the Science of Food and Agriculture 96: 751-756.

ELLIOTT CL & SNYDER GH. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. Journal of Agricultural and Food Chemistry 39: 1118-1119.

EPSTEIN E & BLOOM AJ. 2006. Nutrição mineral de plantas: princípios e perspectivas. Londrina: Planta. 416p.

EPSTEIN E. 1994. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America 91: 11-17.

GERRERO AC et al. 2011. Effect of foliar application of silicon in rocket grown in two types of soil. Bioscience Journal 27: 591-596.

GONZALEZ-MUÑOZ MJ et al. 2008. Beer consumption reduces cerebral oxidation caused by aluminum toxicity by normalizing gene expression of tumor necrotic factor alpha and several antioxidant enzymes. Food Chem Toxicol 46: 1111-1119.

GOUSSAIN MM et al. 2002. Efeito da aplicação de silício em plantas de milho no desenvolvimento biológico da lagarta-do-cartucho Spodoptera frugiperda (J.E.Smith) (Lepidoptera: Noctuidae). Neotropical Entomology 31: 305-310.

GUAZINA RA et al. 2019. Aplicação foliar de silício na produtividade e sanidade de cultivares de soja. Revista de Ciências Agroveterinárias 18: 187-193.

HODSON MJ et al. 2005. Phylogenetic Variation in the Silicon Composition of Plants. Annals of Botany 96: 1027-1046.

JURKIC LM et al. 2013. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy. Nutrition & Metabolism 10: 10-12.

KAMENIDOU S et al. 2008. Silicon supplements affect horticultural traits of greenhouse-produced ornamental sunflowers. Hortscience 43: 236-239.

KINUPP VF & LORENZI H. 2014. Plantas alimentícias não convencionais (PANC) no Brasil: guia de identificação, aspectos nutricionais e receitas ilustradas. São Paulo: Instituto Plantarum de Estudos da Flora. 768p.

KORNDÖRFER GH et al. 1999. Avaliação de métodos de extração de silício em solos cultivados com arroz de sequeiro. Revista Brasileira de Ciência do Solo 23: 101-106.

LIMA DT et al. 2019. Silicon accumulation and its effect on agricultural traits and anthracnose incidence in lignocellulosic sorghum. Pesquisa Agropecuária Tropical 49: e54201.

MALAVOLTA E. 1981. Manual de química agrícola: adubos e adubação. 3.ed. São Paulo: Agronômica Ceres. 594p.

MIRANDA PS et al. 2018. Efeito do silício no cultivo e pós-colheita do repolho. Revista Brasileira de Agroecologia 13: 30-35.

NUNES AMC et al. 2019. Silício na tolerância ao estresse hídrico em tomateiro. Revista Científica Rural 21: 239-258.

ODHAV B et al. 2007. Preliminary assessment of nutritional value of traditional leafy vegetables in KwaZulu-Natal, South Africa. Journal of Food Composition and Analysis 20: 430-435.

OLIVEIRA LCP et al. 2019. Silicate fertilization in non-conventional vegetables in the southern region of Minas Gerais in Brazil. Revista Ceres 66: 470-478.

PILON C et al. 2013. Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Science 53: 1605-1614.

R CORE TEAM. 2016. R: A language and environment for statistical computing Vienna: R Foundation for Statistical Computing.

REIS THP et al. 2007. O silício na nutrição e defesa de plantas. Belo Horizonte: EPAMIG. 119p.

RODELLA LF et al. 2014. A review of the effects of dietary silicon intake on bone homeostasis and regeneration. Journal of Nutrition Health and Aging 18: 820-826.

SÁVIO FL et al. 2011. Biomass production and silicon content in forages under different sources of silicate. Semina: Ciências Agrárias 32: 103-110.

SCOTT AT & KNOTT M. 1974. A Cluster-analysis method for grouping means in analysis of variance. Biometrics 30: 507-512.

SILVA LFL et al. 2018a. Mineral nutrition, planting density, biometric and phenological characterization of the lamb´s ear. Magistra 29: 192-199.

SILVA LFL et al. 2018b. Nutritional Evaluation of Non-Conventional Vegetables in Brazil. Anais da Academia Brasileira de Ciências 90: 1775-1787.

SILVA LFL et al. 2019. Avaliação nutricional de caruru (Amaranthus spp.). Agrarian 12: 411-417.

SILVA MLS et al. 2013. Influência do silício na produção e na qualidade de frutos do morangueiro. Semina 34: 3411-3424.

SOUZA DC et al. 2016. Conservação pós-colheita de araruta em função da temperatura de armazenamento. Magistra 28: 403-410.

SOUZA DC et al. 2019. Characterization of arrowroot starch in different agronomic managements. Revista Ceres 66: 323-332.

ZANÃO JÚNIOR LA et al. 2013. Rose production affected by silicon rates applied to substrate. Revista Brasileira de Ciência do Solo 37: 1611-1619.

Published

2020-06-30

How to Cite

OLIVEIRA, Luís Cláudio Pessoa; SOUZA, Douglas Correa de; SILVA, Luis Felipe Lima e; GUERRA, Thiago Sampaio; RESENDE, Luciane Vilela; SILVA, Maria Ligia de Souza. Effect of silica fertilization on unconventional vegetables. Revista de Ciências Agroveterinárias, Lages, v. 19, n. 2, p. 224–229, 2020. DOI: 10.5965/223811711922020224. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/14996. Acesso em: 17 jul. 2024.

Issue

Section

Research Article - Science of Soil and Environment