Toxicity of Bacillus thuringiensis at different larval ages of Agrotis ipsilon (Lepidoptera: Noctuidae)

Authors

  • Ingrid Schimidt Kaiser Universidade Federal do Espírito Santo, Alegre, ES, Brasil.
  • Victor Luiz Souza Lima Universidade Federal do Espírito Santo, Alegre, ES, Brasil. http://orcid.org/0000-0002-3681-8598
  • Dirceu Pratissoli Universidade Federal do Espírito Santo, Alegre, ES, Brasil.
  • Lorena Contarini Machado Universidade Federal do Espírito Santo, Alegre, ES, Brasil.
  • Regiane Cristina Oliveira de Freitas Bueno Universidade Estadual Paulista, Botucatu, SP, Brasil.

DOI:

https://doi.org/10.5965/223811711912020118

Keywords:

biological control, bioinsecticide, black cutworm, lethal concentration, microbial control

Abstract

The black cutworm Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) is a cosmopolitan and polyphagous pest that attacks diverse crops and weed. One of the alternatives to insecticides may be the use of bioinsecticides based on Bacillus thuringiensis Berliner (Bt). Thus, the objective of the present study were evaluating the toxicity of Agree® and Dipel® bioinsecticides based on Bt on different larval ages of A. ipsilon. For the experiments, five larval ages were used (0-24, 48-72, 96-120, 144-168, and 192-216 h). The A. ipsilon caterpillars were individualized in acrylic tubes containing an artificial diet and 50 μL of each biopesticide in the concentration 1 × 108 spores mL-1. Mortality was assessed for seven days. The two bioinsecticides evaluated promoted mortality at all larval ages of A. ipsilon. The age of 0-24 h had mortality above 90%. The values of LC50 and LC90 were 9.8 × 105 and 7.4 × 106 spores mL-1 for Agree® and 1.3 × 106 e 1.4 × 107 spores mL-1 for Dipel®, respectively, without difference between LC50 and LC90 values of the bioinsecticides. The results indicate that younger caterpillars are more susceptible to Bt-based bioinsecticides.

Downloads

Download data is not yet available.

Author Biography

Victor Luiz Souza Lima, Universidade Federal do Espírito Santo, Alegre, ES, Brasil.

http://lattes.cnpq.br/6483495873660634

References

ABDULLAH MAF et al. 2009. Manduca sexta (Lepidoptera: Sphingidae) cadherin fragments function as synergists for Cry1A and Cry1C Bacillus thuringiensis toxins against noctuid moths Helicoverpa zea, Agrotis ipsilon and Spodoptera exigua. Pest Management Science 65: 1097-1103.

ALINIA F et al. 2000. Effect of Plant Age, Larval Age, and Fertilizer Treatment on Resistance of a cry1Ab-Transformed Aromatic Rice to Lepidopterous Stem Borers and Foliage Feeders. Journal of Economic Entomology 93: 484-493.

BINNING RR et al. 2015. Susceptibility to Bt proteins is not required for Agrotis ipsilon aversion to Bt maize. Pest Management Science 71: 601-606.

BOUGHTON AJ et al. 2001. Potential of Agrotis ipsilon nucleopolyhedrovirus for suppression of the black cutworm (Lepidoptera: Noctuidae) and effect of an optical brightener on virus efficacy. Journal of economic entomology 94: 1045-1052.

EL AZIZ NMA & AWAD HH. 2010. Immune Response in Agrotis ipsilon (Lepidoptera; Noctuidae) induced by Bacillus thuringiensis and Dimilin. Egyptian Journal of Biological Pest Control 20: 7-13.

FERNANDES FL et al. 2013. Damage of Agrotis ipsilon (Lepidoptera: Noctuidae) on Coffea arabica in Brazil. Revista Colombiana de Entomología 39: 49-50.

GONÇALVES KC. 2015. Mortalidade e efeitos subletais de Bacillus thuringiensis Berliner em Spodoptera albula (Walker, 1857). Dissertação (Mestrado em Entomologia Agrícola). Jaboticabal: UNESP. 30p.

GREENE GL et al. 1976. Velvetbean caterpillar: a rearing procedure and artificial medium. Journal of Economic Entomology 69: 487-488.

HADDAD ML et al. 1995. Programa MOBAE: Modelos bioestatísticos aplicados à entomologia (software). Piracicaba: USP. 44p.

IBRAHIM MA et al. 2010. Bacillus thuringiensis. Bioengineered Bugs 1: 31-50.

LI F et al. 2002. Effects of Bt on respiration of the larvae of Agrotis ypsilon (Rottemberg). Natural Enemies of Insects 24: 15-19.

LINK D & COSTA EC. 1984. Comportamento larval da lagarta-rosca, Agrotis ipsilon (Hufnagel, 1767). Revista do Centro de Ciências Rurais 14: 191-199.

MENEZES RS et al. 2010. Seleção e caracterização de estirpes de Bacillus thuringiensis tóxicas a Agrotis ipsilon. Universitas: Ciências da Saúde 8: 1-13.

MORAES CP & FOERSTER LA. 2012. Toxicity and residual control of Plutella xylostella L. (Lepidoptera: Plutellidae) with Bacillus thuringiensis Berliner and insecticides. Ciência Rural 42: 1335-1340.

PARRA JRP et al. 2002. Controle biológico no Brasil: parasitoides e predadores. São Paulo: Manole. 635p.

R DEVELOPMENT CORE TEAM. 2017. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

SANAHUJA G et al. 2011. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnology Journal 9: 283-300.

WANG Y et al. 2015. Different Effects of Bacillus thuringiensis Toxin Cry1Ab on Midgut Cell Transmembrane Potential of Mythimna separata and Agrotis ipsilon Larvae. Toxins 7: 5448-5458.

Downloads

Published

2020-04-03

How to Cite

KAISER, Ingrid Schimidt; LIMA, Victor Luiz Souza; PRATISSOLI, Dirceu; MACHADO, Lorena Contarini; BUENO, Regiane Cristina Oliveira de Freitas. Toxicity of Bacillus thuringiensis at different larval ages of Agrotis ipsilon (Lepidoptera: Noctuidae). Revista de Ciências Agroveterinárias, Lages, v. 19, n. 1, p. 118–121, 2020. DOI: 10.5965/223811711912020118. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/13118. Acesso em: 26 dec. 2024.

Issue

Section

Research Note - Multisections and Related Areas