Copaifera langsdorffii Desf. (Fabaceae) potential as an indicator of climate change by tree ring analysis, Parana, Brazil

Authors

  • Bruno Palka Miranda Universidade Federal do Paraná, Curitiba, PR, Brasil. http://orcid.org/0000-0002-4349-005X
  • Victor Hugo Ferreira Andrade Universidade Estadual do Centro Oeste, Irati, PR, Brasil.
  • Paulo Cesar Botosso Empresa Brasileira de Pesquisa Agropecuária, Colombo, PR, Brasil.
  • Tomaz Longhi Santos Universidade Federal do Paraná, Curitiba, PR, Brasil.
  • Jaçanan Eloisa de Freitas Milani Universidade do Estado de Santa Catarina, Lages, SC, Brasil.
  • Carlos Vellozo Roderjan Universidade Federal do Paraná, Curitiba, PR, Brasil.

DOI:

https://doi.org/10.5965/223811711832019301

Keywords:

dendrochronology, dendroclimatology, El Niño, flood pulses, copaíba

Abstract

Under the current issue of climate change, having access to tools that allow its analysis has become essential for the correct understanding of such changes. The interpretation of climatic signals evidenced in tree rings is one of the ways to understand these relations. Therefore, this study aimed to evaluate how regional climatic relationships have an effect on the Copaifera langsdorffii growth rings, a typical species of the seasonal semideciduous forests of Parana. We used four trees as a result of the vegetation suppression to form the reservoir of the Jayme Canet Júnior Hydroelectric Power Plant, in the middle portion of the Tibagi River, between the municipalities of Telemaco Borba and Ortigueira. From the cross sections of the trees, 40 series were drawn in order to identify and demarcate the limits of the growth rings. Then, we measured the width of the growth rings and performed a quality control and the construction of a regional chronology for the species. The climatic data used for these correlations were obtained from the official meteorological institutes of Parana and a global climate database. The chronology has 240 years, with significant intercorrelation (r = 0,469, p <0.01). The relationship between development peaks and El Niño events was identified, with positive correlations from the 1970s, especially in 1983 (strongest El Niño in Southern Brazil). In this way, the preliminary results reinforce this species potential to be used for dendroecological studies, which may also help in the understanding of climatic changes, as well as their effects at a regional and local level, when incorporated into a sample universe of greater representativity.

Downloads

Download data is not yet available.

References

ADENESKY-FILHO E. 2014. Florística, fitossociologia e dendroecologia em encosta e planície do médio rio Tibagi, Telêmaco Borba, Paraná, Brasil. (Doutorado em Engenharia Florestal). Curitiba: UFPR. 140p.

ALVARES CA et al. 2013. Köppen’s climate classification map for Brasil. Meteorologische Zeitschrift 22: 711-728.

ANDREACCI F et al. 2014. Sinais climáticos em anéis de crescimento de Cedrela fissilis Vell. em diferentes tipologias de florestas ombrófilas do sul do Brasil. Floresta 44: 323-332.

BORMA LS & NOBRE CA. 2013. Secas na Amazônia: causas e consequências. São Paulo: Oficina de Textos. 351p.

BRIFFA KR. 1995. Interpreting high-resolution proxy climate data: the example of dendroclimatology. In: STORCH H & NAVARRA A. (Eds.). Analysis of climate variability, applications of statistical techniques. Berlin: Springer. p. 77-94.

BUDKE JC. 2007. Pulsos de inundação, padrões de diversidade e distribuição de espécies arbóreas em uma floresta ribeirinha no sul do Brasil. Tese (Doutorado em Botânica). Porto Alegre: UFRGS. 195p.

CARDOSO AO. 2005. Relações entre a TSM nos Oceanos Atlântico e Pacífico e as condições climáticas nas regiões Sul e Sudeste do Brasil. Tese (Doutorado em Meteorologia). São Paulo: USP. 192p.

CALLADO CH et al. 2014. Studies on cambial activity: advances and challenges in the knowledge of growth dinamics of Brazilian woody species. Annals of the Brazilian Academy of Sciences 85: 277-283.

CARVALHO PER. 2003. Espécies arbóreas brasileiras. Vol. 1. Colombo: Embrapa Florestas. 1040p.

CAVALCANTI IFA et al. 2009. Tempo e Clima no Brasil. São Paulo: Oficina de Textos. 464p.

CECCANTINI GCT et al. 2008. Os anéis de crescimento das árvores: Desvendando as mudanças climáticas. In: BUCKERIDGE MS. (Ed.). Biologia das mudanças climáticas no Brasil. São Paulo: Ed. Rima. p.57-75.

COELHO CAS et al. 2012. Climate diagnostics of three major drought events in the Amazon and illustrations of their seasonal precipitation predictions. Meteorological Applications 19: 237-255.

COOK ER & HOLMES RL. 1984. Program ARSTAN users manual. Tucson: The University of Arizona Press.

COOK ER & KAIRIUKSTIS LA. 1990. Methods of Dendrochronology: Applications in the Environmental Sciences. Dordrecht: Kluwer. 394p.

COPENHEAVER CA et al. 2006. Causation of false ring formation in Pinus banksiana: A comparison of age, canopy class climate and growth rate. Forest Ecology and Management 236: 348-355.

COSTA MS et al. 2015. Growth analysis of five Leguminosae native tree species from a seasonal semidecidual lowland forest in Brazil. Dendrochronologia 36: 23-32.

CUNHA RG et al. 2011. El Niño/La Niña - Oscilação Sul e seus impactos na agricultura brasileira: fatos, especulações e aplicações. Revista Plantio Direto 20: 18-22.

DIAZ AF et al. 1998. Relationships between precipitation anomalies in Uruguay and southern Brazil and sea surface temperature in the Pacific and Atlantic oceans. Journal of Climate 11: 251-271.

DE FRANÇA V. 2002. O rio Tibagi no contexto hidrogeográfico paranaense. In: MEDRI ME et al. (Eds.). A Bacia do Rio Tibagi. Londrina: UEL. p. 45-63.

DEZZEO N et al. 2003. Annual tree rings revealed by radiocarbon dating in seasonally flooded forest of the Mapire River, a tributary of the lower Orinoco River, Venezuela. Plant Ecology 168: 165-175.

FRITTS HC. 1976. Tree rings and climate. Oxford: Elsevier Science. 582p.

GAN MA & RAO VB. 1991. Surface Cyclogenesis over South America. Monthly Weather Review 119: 1293-1302.

GONÇALVES GV. 2008. Dendrocronologia no Alto São Bento, em Évora: curva de calibração para datações no âmbito da arqueologia. Boletim Cultural “A cidade de Évora” 7. p.73-97.

GRIMM AM et al. 2000. Climate variability in Southern South America associated with El Niño and La Niña. Journal of Climate 13: 35-58.

GRIMM AM & TEDESCHI RG. 2009. ENSO and Extreme Rainfall Events in South America. Journal of Climate 22: 1589-1609.

GRIMM AM et al. 1998. Precipitation anomalies in Southern Brazil associated with El Niño and La Niña events. Journal of Climate 11: 2863-2880.

GRISSINO-MAYER HD. 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research 5: 205-221.

HOLMES LR. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-ring Bulletin 43: 69-78.

HOU W. 1985. Seasonal Fluctuation of Reserve Materials in the Trunkwood of Spruce [Picea abies (L.) Karst.]. Journal of Plant Physiology 117: 355-362.

KOUSKY VE & CAVALCANTI IFA. 1984. Eventos Oscilação Sul - El Niño: características, evolução e anomalias de precipitação. Ciência e Cultura 36: 1888-1899.

IAWA COMMITEE. 1989. IAWA List of Microscopie Features for Hardwood Identification. IAWA Bulletin 10: 219-332.

IBGE. 2012. Instituto Brasileiro de Geografia e Estatística. Manual Técnico da Vegetação Brasileira. 2.ed. Rio de Janeiro: CRNEA. 271p.

INMET. 2015. Instituto Nacional de Meteorologia. Séries meteorológicas históricas para o Brasil. Disponível em: http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep. Acesso em: 05 jul. 2015.

INSIDEWOOD. 2004. A web resource for hardwood anatomy. Disponível em: http://insidewood.lib.ncsu.edu/search Acesso em: 26 fev. 2016.

LARA A et al. 2005. Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35°40’ – 55°S) in the Chilean Andes. Journal of Biogeography 32: 879-893.

LARCHER W. 2000. Ecofisiologia vegetal. São Carlos: Rima Artes e Textos. 531p.

LATORRACA JVF et al. 2015. Dendrocronologia de árvores de Schizolobium parahyba (Vell.) S. F. Blake de ocorrência na REBIO de Tinguá-RJ. Revista Árvore 39: 385-394.

LI J et al. 2011. Interdecadal modulation of El Niño amplitude during the past millennium. Nature Climate Change 1: 114-118.

LISI CS et al. 2008. Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in Southeast Brazil. IAWA Journal 29: 189-207.

LOCOSSELLI GM et al. 2016a. Rock outcrops reduce temperature-induced stress for tropical conifer by decoupling regional climate in the semiarid environment. International Journal of Biometeorology 60: 639-649.

LOCOSSELLI GM et al. 2016b. Climate/growth relations and teleconections for Hymenaea courbaril (Leguminosae) population inhabiting the dry forest on karst. Trees-structure and function 30: 1127-1136.

LONGHI-SANTOS T. 2017. Dendroecologia de Aspidosperma polyneuron Müll. Arg. em duas condições geomorfológicas no Sul do Brasil. Tese (Doutorado em Engenharia Florestal). Curitiba: UFPR. 110p.

LORENSI C. 2012. Estudo de eventos de El Niño e La Niña em anéis de crescimento de árvores para a região sul do Brasil. Dissertação (Mestrado em Meteorologia). Santa Maria: UFSM. 116p.

MAACK R 2012. Geografia Física do Estado do Paraná. 3.ed. Ponta Grossa: UEPG. 440p.

MARCATI CR et al. 2011. Anatomia comparada do lenho de Copaifera langsdorffii Desf. (Leguminosae-Caesalpinioideae) de floresta e cerradão. Revista Brasileira de Botânica 24: 311-320.

MELO JR. JCF et al. 2011. Anatomia ecológica do lenho de Copaifera langsdorffii Desf. (Leguminosae) distribuída em diferentes condições edáficas do cerrado sul-brasileiro. Iheringia Série Botânica 66: 189-200.

MIRANDA BP. 2015. Dendroecologia de Ilex microdonta Reissek e Drimys brasiliensis Miers em dois ambientes altomontanos da Serra do Mar, Paraná, Brasil. Dissertação (Mestrado em Engenharia Florestal). Curitiba: UFPR. 94p.

OLIVEIRA GS. 2001. O El Niño e você – o fenômeno climático. São José dos Campos: Editora Transtec. 115p.

PAEGLE JN & MO KC. 2002. Linkages between summer rainfall variability over south America and sea surface temperature anomalies. Journal of Climate 15: 1389-1407.

PRYIA PB & BHAT KM. 1998. False ring formation in teak (Tectona grandis L.f.) and the influence of environmental factors. Forest Ecology and Management 108: 215-222.

RODERJAN CV et al. 2002. As unidades fitogeográficas do estado do Paraná, Brasil. Ciência & Ambiente 24: 78-118.

ROZENDAAL DMA & ZUIDEMA PA. 2011. Dendroecology in the tropics: a review. Trees 25: 3-16.

SCHWEINGRUBER FH. 1988. Tree Rings: Basics and Applications of Dendrochronology. Dordrecht: D. Reidel Publishers. 276p.

SCHÖNGART J et al. 2002. Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. Journal of Tropical Ecology 18: 581-597.

SCHÖNGART J et al. 2004. Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern Oscillation effect. Global Change Biology 10: 683-692.

SCHÖNGART J et al. 2005. Wood growth of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water floodplain forests. Oecologia 145: 454-461.

SCHÖNGART J et al. 2006. Climate-growth relationship of tropical tree species in West Africa and their potencial for climate reconstruction. Global Change Biology 12: 1139-1150.

SCHÖNGART J et al. 2015. Age and Growth Patterns of Brazil Nut Trees (Bertholletia excelsa Bonpl.) in Amazonia, Brazil. Biotropica 47: 550-558.

SCHÖNGART J et al. 2017. Dendroecological Studies in the Neotropics: History, Status and Future Challenges. In: AMOROSO M et al. (Eds). Dendroecology. Tree-Ring Analyses Applied to Ecological Studies. Springer International Publishing. p. 35-73.

SCHULMAN E. 1956. Dendroclimatic changes in Semiarid America. Tucson: University of Arizona Press. 142p.

SOLIZ-GAMBOA CC et al. 2011. Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25: 17-27.

STOKES MA & SMILEY TL. 1968. An introduction to tree-ring dating. Chicago: The University of Chicago Press. 73p.

TOMAZELLO FILHO M et al. 2004. Anatomical features of increment zones in different tree species in the state of São Paulo, Brazil. Scientia Forestalis 66: 46-55.

WIGLEY TML et al. 1984. On the average value of correlated times series, with applications in dendroclimatology and Hydrometeorology. Journal of Climate and Applied Meteorology 23: 201-213.

WIMMER R. 2002. Wood anatomical features in tree-rings as indicators of environmental change. Dendrochronologia 20: 21-36.

WORBES M et al. 2003. Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon. Forest Ecology and Management 173: 105-123.

YOON JH & ZENG N. 2010. An Atlantic influence on Amazon rainfall. Climate Dynamics 34: 249-264.

Published

2019-07-30

How to Cite

MIRANDA, Bruno Palka; ANDRADE, Victor Hugo Ferreira; BOTOSSO, Paulo Cesar; SANTOS, Tomaz Longhi; MILANI, Jaçanan Eloisa de Freitas; RODERJAN, Carlos Vellozo. Copaifera langsdorffii Desf. (Fabaceae) potential as an indicator of climate change by tree ring analysis, Parana, Brazil. Revista de Ciências Agroveterinárias, Lages, v. 18, n. 3, p. 301–312, 2019. DOI: 10.5965/223811711832019301. Disponível em: https://periodicos.udesc.br/index.php/agroveterinaria/article/view/10954. Acesso em: 22 dec. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)