Microclimate in an agro-ecological silvopastoral system with bamboo at different tree-shade projection distances: a case study in Southern Brazil

Cátia Hermes, Frederico Márcio Corrêa Vieira, Aline Delfino Germano, Fabiana Rankrape, Erica Rui Militão, Américo Wagner Júnior, Edgar Souza Vismara


The aim of the present study was to evaluate the ability of an agro-ecological silvopastoral system, composed of bamboo and tree species, to promote microclimatic alterations at different projection distances from the canopy of trees. A total of 16 paddocks in an agro-ecological silvopastoral system were evaluated. The paddocks were divided into four separate groups (silvopastoral treatments): a) Bambusa vulgaris L. and planted trees, b) only bamboo, c) only trees, and d) open grassland system. The following microclimate parameters were studied: air temperature, relative humidity, grass temperature and wind speed. All parameters were measured at a height of 20 cm above the soil. The measurements were recorded by different time intervals, in order to examine the effect of three factors: time of day, silvopasture treatment and distance to the row of trees. The results show that there was an increase in relative humidity and a reduction in wind speed close to the tree line. The agro-ecological silvopastoral system acts therefore as a windbreaker and retains humidity close to the trees. Thus, it can be concluded that regardless of the presence of bamboo, due to the limited canopy area at young stage of B. vulgaris, the agro-ecological silvopastoral system promoted microclimatic alterations to the environment, indicating the potential of this integrated system to reduce the heat load for livestock and plants.


agroecology, biometeorology, integrated production systems.

Full Text:



ALTIERI MA & NICHOLLS CI. 2010. Agroecología: potenciando la agricultura campesina para revertir el hambre y la inseguridad alimentaria en el mundo. Revista de Economía Crítica 10: 62-74.

ALVARES CA et al. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711-728

BALISCEI MA et al. 2013. Microclimate without shade and silvopastoral system during summer and winter. Acta Scientiarum. Animal Sciences 35: 49-56.

BATES D et al. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1-48.

BERNARDINO FS & GARCIA R. 2009. Sistemas silvipastoris. Pesquisa Florestal Brasileira 60: 77-87.

BOOSTMA A. 1976. Estimating grass minimum temperatures from screen minimum values and other climatological parameters. Agricultural Meteorology 16: 103-113.

CLEUGH HA. 1998. Effects of windbreaks on airflow, microclimates and crop yields. Agroforestry Systems 41: 55-84.

GREGORY NG. 1995. The role of shelterbelts in protecting livestock: A review. New Zealand Journal of Agricultural Research 38: 423–450.

HAILE SG et al. 2010. Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Global Change Biology 16: 427-438.

MAOYI F & BANIK RL. 1995. Bamboo production systems and their management. In: 5 International Bamboo Workshop and the 4 International Bamboo Congress: propagation and Management. Bali: INBAR. P. 18-33.

MORAES JÚNIOR RJ et al. 2010. Conforto ambiental de bezerros bubalinos (Bubalus bubalis Linnaeus, 1758) em sistemas silvipastoris na Amazônia Oriental. Acta Amazonica 40: 629-640.

NEPOMUCENO AN & SILVA IC. 2009. Caracterização de sistemas silvipastoris da região Noroeste do estado do Paraná. Floresta 39: 279-287.

PACIULLO DSC et al. 2008. Crescimento de capim-braquiária influenciado pelo grau de sombreamento e pela estação do ano. Pesquisa Agropecuária Brasileira 43: 917-923.

PEZO D & IBRAHIM M. 1998. Sistemas silvipastoriles. Costa Rica: CATIE. 12p.

R DEVELOPMENT CORE TEAM. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available at: http://www.R-project.org. Access on: 23 Sep. 2016.

RASMUSSEN LV et al. 2017. Bridging the practitioner-researcher divide: Indicators to track environmental, economic, and sociocultural sustainability of agricultural commodity production. Global Environmental Change 42: 33-46

SILVA RG. 1999. Estimativa do balanço térmico por radiação em vacas holandesas expostas ao sol e à sombra em ambiente tropical. Revista Brasileira de Zootecnia 28: 1403-1411.

SILVA VR et al. 2006. Variação na temperatura do solo em três sistemas de manejo na cultura do feijão. Revista Brasileira de Ciência do Solo 30: 391-399.

SINGH AK et al. 2012. Dynamics of tree-crop interface in relation to their influence on microclimatic changes - a review. HortFlora Research Spectrum 1: 193-198.

SOUZA ES. 2009. Conforto térmico de vacas leiteiras em monocultivo de capim marandu e em sistema silvipastoril com coqueiros em Parnaíba. Dissertação (Mestrado em Ciência Animal). Teresina: UFPI. 26p.

ZHANG W & CLARK LG. 2000. Phylogeny and classification of the Bambusoideae (Poaceae). In: JACOBS WL & EVERRET J (Orgs.). Grasses: Systematics and Evolution. Melbourne: CSIRO Publishing. p.35-42.

DOI: http://dx.doi.org/10.5965/223811711712018142


  • There are currently no refbacks.


Revista de Ciências Agroveterinárias (Rev. Ciênc. Agrovet.), Lages, SC, Brasil        ISSN 2238-1171